2023-2024学年天津河北区八上数学期末调研试题含答案
展开学校_______ 年级_______ 姓名_______
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每题4分,共48分)
1.若分式,则分式的值等于( )
A.﹣B.C.﹣D.
2.在解分式方程时,我们第一步通常是去分母,即方程两边同乘以最简公分母(x﹣1),把分式方程变形为整式方程求解.解决这个问题的方法用到的数学思想是( )
A.数形结合B.转化思想C.模型思想D.特殊到一般
3.点 (,)在第二象限,则的值可能为( )
A.2B.1C.0D.
4.一个长方形的面积是,且长为,则这个长方形的宽为( )
A.B.C.D.
5.若展开后不含的一次项,则与的关系是
A.B.
C.D.
6.一个三角形三个内角的度数之比为1:2:3,则这个三角形一定是( )
A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形
7.以下列各组线段为边,能构成直角三角形的是 ( )
A.8cm,9cm,10cmB.cm,cm,cm
C.1cm,2cm,cmD.6cm,7cm,8cm
8.已知△ABC中,AB=7,BC=4,那么边长AC的长不可能是( )
A.11B.9C.7D.4
9.将△ABC各顶点的横坐标都乘以﹣1,纵坐标不变,顺次连接这三个点,得到另一个三角形,下列选项正确的是( )
A.B.
C.D.
10.已知的三边长分别为,且那么( )
A.B.C.D.
11.已知=5,=10,则=(___)
A.50B.-5C.2D.25
12.如图,有一个池塘,其底面是边长为10尺的正方形,一个芦苇AB生长在它的中央,高出水面部分BC为1尺.如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B恰好碰到岸边的B′.则这根芦苇的长度是( )
A.10尺B.11尺C.12尺D.13尺
二、填空题(每题4分,共24分)
13.已知,正比例函数经过点(-1,2),该函数解析式为________________.
14.已知,,则的值为_________.
15.如图,已知一次函数和的图象交于点,则二元一次方程组的解是 _______.
16.如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于D,将AB边沿AD折叠,发现B点的对应点E正好在AC的垂直平分线上,则∠C=_______
17.如果一个三角形的两边长分别是2cm和7cm,且第三边为奇数,则三角形的周长是___cm.
18.若,则______.
三、解答题(共78分)
19.(8分)如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米.一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行多少米?
20.(8分)如图,正方形ABCD的边长为a,射线AM是∠A外角的平分线,点E在边AB上运动(不与点A、B重合),点F在射线AM上,且AF=√2BE,CF与AD相交于点G,连结EC、EF、EG.
(1)求证:CE=EF;
(2)求△AEG的周长(用含a的代数式表示)
(3)试探索:点E在边AB上运动至什么位置时,△EAF的面积最大?
21.(8分)如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD;
(1)已知∠A=85°,∠ACE=115°,求∠B度数;
(2)求证:AB=DE.
22.(10分)已知:如图,9×9的网格中(每个小正方形的边长为1)有一个格点△ABC.
(1)利用网格线,画∠CAB的角平分线AQ,交BC于点Q,画BC的垂直平分线,交射线AQ于点D;
(2)连接CD、BD,则∠CDB= °.
23.(10分)阅读下列材料,并按要求解答.
(模型建立)如图①,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于点D,过B作BE⊥ED于点E.求证:△BEC≌△CDA.
(模型应用)
应用1:如图②,在四边形ABCD中,∠ADC=90°,AD=6,CD=8,BC=10,AB2=1.求线段BD的长.
应用2:如图 ③,在平面直角坐标系中,纸片△OPQ为等腰直角三角形,QO=QP,P(4,m),点Q始终在直线OP的上方.
(1)折叠纸片,使得点P与点O重合,折痕所在的直线l过点Q且与线段OP交于点M,当m=2时,求Q点的坐标和直线l与x轴的交点坐标;
(2)若无论m取何值,点Q总在某条确定的直线上,请直接写出这条直线的解析式 .
24.(10分)已知,如图,在△ABC中,AD,AE分别是△ABC的高和角平分线,若∠B=20°,∠C=60°.求∠DAE的度数.
25.(12分)先化简,再求值:4(x﹣1)2﹣(2x+3)(2x﹣3),其中x=﹣1.
26.(12分)小明从家出发沿一条笔直的公路骑自行车前往图书馆看书,他与图书馆之间的距离y(km)与出发时间t(h)之间的函数关系如图1中线段AB所示,在小明出发的同时,小明的妈妈从图书馆借书结束,沿同一条公路骑电动车匀速回家,两人之间的距离s(km)与出发时间t(h)之间的函数关系式如图2中折线段CD﹣DE﹣EF所示.
(1)小明骑自行车的速度为 km/h、妈妈骑电动车的速度为 km/h;
(2)解释图中点E的实际意义,并求出点E的坐标;
(3)求当t为多少时,两车之间的距离为18km.
参考答案
一、选择题(每题4分,共48分)
1、B
2、B
3、A
4、A
5、B
6、B
7、C
8、A
9、A
10、D
11、A
12、D
二、填空题(每题4分,共24分)
13、y=-2x
14、
15、
16、30°
17、16
18、-1
三、解答题(共78分)
19、10
20、(1)见解析;(2)2a;(3)点在边中点时,最大,最大值为
21、(1)30°;(2)见解析
22、(1)见解析;(2)1
23、模型建立:见解析;应用1:2;应用2:(1)Q(1,3),交点坐标为(,0);(2)y=﹣x+2
24、20°
25、化简结果:-8x+13,值为21.
26、(1)16,20;(2)点E表示妈妈到了甲地,此时小明没到,E(,);(3)或
天津市河北区名校2023-2024学年九上数学期末统考试题含答案: 这是一份天津市河北区名校2023-2024学年九上数学期末统考试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,某反比例函数的图象经过点,一元二次方程等内容,欢迎下载使用。
天津市河北区红光中学2023-2024学年九上数学期末达标检测模拟试题含答案: 这是一份天津市河北区红光中学2023-2024学年九上数学期末达标检测模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,一元二次方程的正根的个数是,若反比例函数y=等内容,欢迎下载使用。
天津市河北区扶轮中学2023-2024学年九上数学期末质量跟踪监视试题含答案: 这是一份天津市河北区扶轮中学2023-2024学年九上数学期末质量跟踪监视试题含答案,共8页。试卷主要包含了按下面的程序计算,下列四种说法,一个物体如图所示,它的俯视图是等内容,欢迎下载使用。