2023-2024学年安徽省淮南市谢家集区数学八上期末预测试题含答案
展开这是一份2023-2024学年安徽省淮南市谢家集区数学八上期末预测试题含答案,共9页。试卷主要包含了考生要认真填写考场号和座位序号,下列命题是真命题的是,在,,,,中,分式的个数是,已知+=0,则的值是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每题4分,共48分)
1.如图,直线,点、在上,点在上,若、,则的大小为( )
A.B.C.D.
2.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长是,则图中四个小正方形的面积之和是( )
A.B.C.D.不能确定
3.如图,在△ABC中,∠C=90°,∠B=10°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是
①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:1.
A.1B.2C.1D.4
4.两个一次函数与,它们在同一直角坐标系中的图象可能是( )
A.B.
C.D.
5.一个三角形的三边长分别为,则这个三角形的形状为( )
A.钝角三角形B.直角三角形C.锐角三角形D.形状不能确定
6.下列各组条件中,能判定△ABC≌△DEF的是( )
A.AB=DE,BC=EF,∠A=∠D
B.∠A=∠D,∠C=∠F,AC=EF
C.AB=DE,BC=EF,△ABC的周长=△DEF的周长
D.∠A=∠D,∠B=∠E,∠C=∠F
7.下列命题是真命题的是( )
A.如果 a>b,a>c,那么 b=c
B.相等的角是对顶角
C.一个角的补角大于这个角
D.一个三角形中至少有两个锐角
8.下图是北京世界园艺博览会园内部分场馆的分布示意图,在图中,分别以正东、正北方向为轴、轴的正方向建立平向直角坐标系,如果表示演艺中心的点的坐标为,表示水宁阁的点的坐标为,那么下列各场馆的坐标表示正确的是( )
A.中国馆的坐标为
B.国际馆的坐标为
C.生活体验馆的坐标为
D.植物馆的坐标为
9.在,,,,中,分式的个数是( )
A.2B.3C.4D.5
10.已知+=0,则的值是( )
A.-6B.C.9D.-8
11.如图,平面直角坐标系xOy中,点A在第一象限,B(2,0),∠AOB=60°,∠ABO=90°.在x轴上取一点P(m,0),过点P作直线l垂直于直线OA,将OB关于直线l的对称图形记为O′B′,当O′B′和过A点且平行于x轴的直线有交点时,m的取值范围为( )
A.m≥4B.m≤6C.4<m<6D.4≤m≤6
12.如图,等边△ABC的边长为4,AD是边BC上的中线,F是边AD上的动点,E是边AC上一点,若AE=2,则EF+CF取得最小值时,∠ECF的度数为( )
A.15°B.22.5°C.30°D.45°
二、填空题(每题4分,共24分)
13.整体思想就是通过研究问题的整体形式从面对问题进行整体处理的解题方法.如,此题设“,”,得方程,解得,.利用整体思想解决问题:采采家准备装修-厨房,若甲,乙两个装修公司,合做需周完成,甲公司单独做4周后,剩下的由乙公司来做,还需周才能完成,设甲公司单独完成需周,乙公司单独完成需周,则得到方程_______.利用整体思想 ,解得__________.
14.如图,已知Rt△ABC中,∠ACB=90°,D是AB的中点,CD=2cm,则AB= cm.
15.一个多边形所有内角都是135°,则这个多边形的边数为_________
16.如图,在中,,,垂直平分,点为直线上的任一点,则周长的最小值是__________
17.如图,在长方形ABCD中,按以下步骤作图:①分别以点A和C为圆心,以大于AC的长为半径作弧,两弧相交于点M和N;②作直线MN交CD于点E.若DE=3,CE=5,则AD的长为__________.
18.可燃冰是一种新型能源,它的密度很小,可燃冰的质量仅为.数字0.00092用科学记数法表示是__________.
三、解答题(共78分)
19.(8分)计算:
(1);
(2)(-2)×-6;
(3);
(4).
20.(8分)亚洲文明对话大会召开期间,大批的大学生志愿者参与服务工作.某大学计划组织本校全体志愿者统一乘车去会场,若单独调配36座新能源客车若干辆,则有2人没有座位;若只调配22座新能源客车,则用车数量将增加4辆,并空出2个座位.
(1)计划调配36座新能源客车多少辆?该大学共有多少名志愿者?
(2)若同时调配36座和22座两种车型,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?
21.(8分)如图1,已知中内部的射线与的外角的平分线相交于点.若.
(1)求证:平分;
(2)如图2,点是射线上一点,垂直平分于点,于点,连接,若,求.
22.(10分)如图,已知一次函数y=kx+b的图象经过A(﹣2,﹣1),B(1,3)两点,并且交x轴于点C,交y轴于点D.
(1)求一次函数的解析式;
(2)求点C和点D的坐标;
(3)求△AOB的面积.
23.(10分)已知A、B两点在直线的同侧,试在上找两点C和D(CD的长度为定值),使得AC+CD+DB最短(保留作图痕迹,不要求写画法).
24.(10分)如图,两条公路OA与OB相交于点O,在∠AOB的内部有两个小区C与D,现要修建一个市场P,使市场P到两条公路OA、OB的距离相等,且到两个小区C、D的距离相等.
(1)市场P应修建在什么位置?(请用文字加以说明)
(2)在图中标出点P的位置(要求:用尺规作图,不写作法,保留作图痕遼,写出结论).
25.(12分)对于两个不相等的实数心、,我们规定:符号表示、中的较大值,如:.按照这个规定,求方程(为常数,且)的解.
26.(12分)如图,AD⊥AE,AB⊥AC,AD=AE,AB=AC.求证:△ABD≌△ACE.
参考答案
一、选择题(每题4分,共48分)
1、B
2、A
3、D
4、C
5、B
6、C
7、D
8、A
9、A
10、B
11、D
12、C
二、填空题(每题4分,共24分)
13、
14、1.
15、6
16、1
17、1
18、9.2×10﹣1.
三、解答题(共78分)
19、(1)2;(2)-6;(3);(4).
20、(1)计划调配36座新能源客车6辆,该大学共有218名志愿者.(2)需调配36座客车3辆,22座客车5辆.
21、(1)详见解析;(2)1.
22、(1)y=x+;(2)C点坐标为(,0),D点坐标为(0,),(3).
23、作图见解析.
24、(1)详见解析;(2)详见解析.
25、x=﹣1或
26、证明见解析
相关试卷
这是一份安徽省淮南市谢家集区等3地2023-2024学年九年级上学期期末数学试题(含解析),共21页。试卷主要包含了5 毫米黑色墨水签字等内容,欢迎下载使用。
这是一份2023-2024学年安徽省淮南市谢家集区等3地八年级(上)学期期末数学试题(含解析),共16页。试卷主要包含了选择题,填空题等内容,欢迎下载使用。
这是一份安徽省淮南市谢家集区等3地2023-2024学年八年级上学期期末数学试题(含答案),共17页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。