2023-2024学年浙江省杭州江干区六校联考八年级数学第一学期期末复习检测模拟试题含答案
展开学校_______ 年级_______ 姓名_______
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每题4分,共48分)
1.下列图形中,是轴对称图形且只有三条对称轴的是( )
A.B.C.D.
2.如图,已知在平面直角坐标系中,四边形ABCD是菱形,其中B点坐标是(8,2),D点坐标是(0,2),点A在x轴上,则菱形ABCD的周长是( )
A.2
B.8
C.8
D.12
3.下列各组线段中,能够组成直角三角形的一组是( )
A.1,2,3B.2,3,4C.4,5,6D.1,,2
4.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为
A.B.C.D.
5.已知一粒米的质量是0.00021kg,这个数用科学记数法表示为 ( )
A.kgB.kgC.kgD.kg
6.如图,将四边形纸片ABCD沿AE向上折叠,使点B落在DC边上的点F处若的周长为18,的周长为6,四边形纸片ABCD的周长为
A.20B.24C.32D.48
7.如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的( )
A.AB=CDB.EC=BFC.∠A=∠DD.AB=BC
8.如图,C为线段AE上一动点(不与A、E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ,以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°其中完全正确的是( )
A.①②③④B.②③④⑤C.①③④⑤D.①②③⑤
9.甲、乙两人同时分别从A,B两地沿同一条公路骑自行车到C地.已知A,C两地间的距离为110千米,B,C两地间的距离为100千米.甲骑自行车的平均速度比乙快2千米/时.结果两人同时到达C地.求两人的平均速度,为解决此问题,设乙骑自行车的平均速度为x千米/时.由题意列出方程.其中正确的是( )
A.B.C.D.
10.如图为某居民小区中随机调查的户家庭一年的月平均用水量(单位:)的条形统计图,则这户家庭月均用水量的众数和中位数分别是( ).
A.,B.,C.,D.,
11.在分式中,若,都扩大为原来的2倍,则所得分式的值( )
A.不变B.是原来的2倍C.是原来的4倍D.无法确定
12.比较,3,的大小,正确的是( )
A.B.
C.D.
二、填空题(每题4分,共24分)
13.如图,ABCDE是正五边形,△OCD是等边三角形,则∠COB=_____°.
14.如图,有一圆柱,其高为12cm,它的底面半径为3cm,在圆柱下底面A处有一只蚂蚁,它想得到上面B处的食物,则蚂蚁经过的最短路程为________ cm.(π取3)
15.如图,在四边形中,且,,,平分交的延长线于点,则_________.
16.若x+2(m-3)x+16是一个完全平方式,那么m应为_______.
17.已知,,,为正整数,则_________.
18.点P(1,﹣2)关于x轴对称的点的坐标为P′______.
三、解答题(共78分)
19.(8分)先化简,再求值.,其中x=1.
20.(8分)某校初二数学兴趣小组活动时,碰到这样一道题:
“已知正方形AD,点E、F、G、H分别在边AB、BC、CD、DA上,若,则EG=FH”.
经过思考,大家给出了以下两个方案:
(甲)过点A作AM∥HF交BC于点M,过点B作BN∥EG交CD于点N;
(乙)过点A作AM∥HF交BC于点M,作AN∥EG交CD的延长线于点N;
(1)对小杰遇到的问题,请在甲、乙两个方案中任选一个,加以证明(如图1)
(2)如果把条件中的“”改为“EG与FH的夹角为45°”,并假设正方形ABCD的边长为1,FH的长为(如图2),试求EG的长度.
21.(8分)如图,△ABC≌△ADE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,求∠DFB和∠DGB的度数.
22.(10分)某大型超市投入15000元资金购进、两种品牌的矿泉水共600箱,矿泉水的成本价和销售价如下表所示:
(1)该大型超市购进、品牌矿泉水各多少箱?
(2)全部销售完600箱矿泉水,该超市共获得多少利润?
23.(10分)某商场投入13800元资金购进甲、乙两种矿泉水共500箱,矿泉水的成本价和销售价如表所示:
(1)该商场购进甲、乙两种矿泉水各多少箱?
(2)全部售完500箱矿泉水,该商场共获得利润多少元?
24.(10分)请在下列横线上注明理由.
如图,在中,点,,在边上,点在线段上,若,,点到和的距离相等.求证:点到和的距离相等.
证明:∵(已知),
∴(______),
∴(______),
∵(已知),
∴(______),
∵点到和的距离相等(已知),
∴是的角平分线(______),
∴(角平分线的定义),
∴(______),
即平分(角平分线的定义),
∴点到和的距离相等(______).
25.(12分)已知和是两个等腰直角三角形,.连接,是的中点,连接、.
(1)如图,当与在同一直线上时,求证:;
(2)如图,当时,求证:.
26.(12分)小明和小津去某风景区游览.小明从明桥出发沿景区公路骑自行车去陶公亭,同一时刻小津在霞山乘电动汽车出发沿同一公路去陶公亭,车速为.他们出发后时,离霞山的路程为,为的函数图象如图所示.
(1)求直线和直线的函数表达式;
(2)回答下列问题,并说明理由:
①当小津追上小明时,他们是否已过了夏池?
②当小津到达陶公亭时,小明离陶公亭还有多少千米?
参考答案
一、选择题(每题4分,共48分)
1、C
2、C
3、D
4、C
5、A
6、B
7、A
8、D
9、A
10、B
11、A
12、C
二、填空题(每题4分,共24分)
13、66°
14、15cm.
15、3 ;
16、-1或7
17、
18、(1,2)
三、解答题(共78分)
19、,.
20、 (1) 证明见解析;(2).
21、90°;65°
22、(1)该超市进品牌矿泉水400箱,品牌矿泉水200箱;(2)该超市共获利润7800元.
23、(1)商场购进甲种矿泉水300箱,购进乙种矿泉水200箱(2)该商场共获得利润6600元
24、同位角相等,两直线平行;两直线平行,同位角相等;两直线平行,同位角相等;角的内部到角的两边距离相等的点在角的平分线上;等量代换;角平分线上的点到角的两边的距离相等.
25、(1)证明见详解;
(2)证明见详解
26、(1)直线OC的函数表达式为;直线AB的函数表达式为;(2)①当小津追上小明时,他们没过夏池,理由见解析;②当小津到达陶公亭时,小明离陶公亭还有15千米,理由见解析.
类别/单价
成本价(元/箱)
销售价(元/箱)
A品牌
20
32
B品牌
35
50
类别/单价
成本价
销售价(元/箱)
甲
24
36
乙
33
48
浙江省杭州拱墅区七校联考2023-2024学年数学九上期末复习检测模拟试题含答案: 这是一份浙江省杭州拱墅区七校联考2023-2024学年数学九上期末复习检测模拟试题含答案,共9页。试卷主要包含了方程的根是等内容,欢迎下载使用。
2023-2024学年浙江省杭州江干区六校联考数学九年级第一学期期末质量检测模拟试题含答案: 这是一份2023-2024学年浙江省杭州江干区六校联考数学九年级第一学期期末质量检测模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,下列说法正确的是等内容,欢迎下载使用。
浙江省杭州下城区五校联考2023-2024学年八年级数学第一学期期末达标检测模拟试题含答案: 这是一份浙江省杭州下城区五校联考2023-2024学年八年级数学第一学期期末达标检测模拟试题含答案,共7页。试卷主要包含了式子中x的取值范围是,下列关于一次函数等内容,欢迎下载使用。