四川省成都市青羊区石室教育集团2023-2024学年八上数学期末监测试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每题4分,共48分)
1.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的大正方形.设直角三角形较长的直角边为,较短的直角边为,且,则大正方形面积与小正方形面积之比为( )
A.25:9B.25:1C.4:3D.16:9
2.下列多项式中,能分解因式的是( )
A.m2+n2B.-m2-n2C.m2-4m+4D.m2+mn+n2
3.如图,AD//BC,点E是线段AB的中点,DE平分, BC=AD+2,CD=7,则的值等于( )
A.14B.9C.8D.5
4.已知点到轴的距离为3,到轴距离为2,且在第四象限内,则点的坐标为( )
A.(2,3)B.(2,-3)C.(3,-2)D.不能确定
5.如图,把三角板的斜边紧靠直尺平移,一个顶点从刻度“5”平移到刻度“10”,则顶点C平移的距离CC′=( )
A.10B.5C.4D.3
6.如图,在和中,连接AC,BD交于点M,AC与OD相交于E,BD与OA相较于F,连接OM,则下列结论中:①;②;③;④MO平分,正确的个数有( )
A.4个B.3个C.2个D.1个
7.长度分别为3,7,a的三条线段能组成一个三角形,则a的值可以是( )
A.3B.4C.6D.10
8.如图1,将三角板的直角顶点放在直角尺的一边上,∠1=30°,∠2=50°,则∠3的度数为
A.80°B.50°C.30°D.20°
9.如图点在内,且到三边的距离相等.若,则等于( )
A.B.C.D.
10.如图,ABCD的对角线、交于点,顺次联结ABCD各边中点得到的一个新的四边形,如果添加下列四个条件中的一个条件:①⊥;②;③;④,可以使这个新的四边形成为矩形,那么这样的条件个数是()
A.1个;B.2个;
C.3个;D.4个.
11.下列四个图案中,不是轴对称图形的是( )
A.B.C.D.
12.下列判定直角三角形全等的方法,不正确的是( )
A.两条直角边对应相等B.两个锐角对应相等
C.斜边和一直角边对应相等D.斜边和一锐角对应相等
二、填空题(每题4分,共24分)
13.命题“对顶角相等”的逆命题是__________.
14.若(m+1)0=1,则实数m应满足的条件_____.
15.如图,已知的三边长分别为6、8、10,分别以它们的三边作为直径向外作三个半圆,则图中阴影部分的面积为_______.
16.如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是__________
17.如图正方形ABCD分割成为七巧板迷宫,点E,F分别是CD,BC的中点,一只蚂蚁从D处沿图中虚线爬行到出口F处,若AB=2,则它爬行的最短路径长为_____.
18.分解因式:2x2﹣8=_____________
三、解答题(共78分)
19.(8分)某中学举行“中国梦·校园好声音”歌手大赛,高、初中根据初赛成绩各选出5名选手组成初中代表队和高中代表队参加学校决赛,两个队各选出的5名选手的决赛成绩(满分100)如下图所示:
根据图示信息,整理分析数据如下表:
(说明:图中虚线部分的间隔距离均相等)
(1)求出表格中的值;
(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;
(3)计算两队决赛成绩的方差,并判断哪一个代表队选手成绩较为稳定.
20.(8分)如图,已知,为线段上一点,为线段上一点,,设,.
①如果,那么_______,_________;
②求之间的关系式.
21.(8分) “安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A.仅学生自己参与;B.家长和学生一起参与;
C.仅家长自己参与; D.家长和学生都未参与.
请根据图中提供的信息,解答下列问题:
(1)在这次抽样调查中,共调查了________名学生;
(2)补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的度数;
(3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数.
22.(10分)数学课上,张老师出示了如下框中的题目.
已知,在中,,,点为的中点,点和点分别是边和上的点,且始终满足,试确定与的大小关系.
小明与同桌小聪讨论后,进行了如下解答:
(1)(特殊情况,探索结论)如图1,若点与点重合时,点与点重合,容易得到与的大小关系.请你直接写出结论:____________(填“”,“”或“”).
(2)(特例启发,解答题目)如图2,若点不与点重合时,与的大小关系是:_________(填“”,“”或“”).理由如下:连结,(请你完成剩下的解答过程)
(3)(拓展结论,设计新题)在中,,点为的中点,点和点分别是直线和直线上的点,且始终满足,若,,求的长.(请你直接写出结果)
23.(10分)某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.
(1)该商场两次共购进这种运动服多少套?
(2)如果这两批运动服每套的售价相同,且全部售完后总利润不低于,那么每套售价至少是多少元?
24.(10分)观察下列等式:
①32﹣31=2×31;②33﹣32=2×32;③34﹣33=2×33;④35﹣34=2×34…根据等式所反映的规律,解答下列问题:
(1)直接写出:第⑤个等式为 ;
(2)猜想:第n个等式为 (用含n的代数式表示),并证明.
25.(12分)如图,三个顶点坐标分别是
(1)请画出关于轴对称的;
(2)直接写出的坐标;
(3)求出的面积.
26.(12分)如图,在ΔABC中,AB=AC,E是AB上一点,F是AC延长线上一点,连EF交BC于D. 如果EB=CF,求证:DE=DF.
参考答案
一、选择题(每题4分,共48分)
1、B
2、C
3、A
4、B
5、B
6、B
7、C
8、D
9、A
10、C
11、D
12、B
二、填空题(每题4分,共24分)
13、相等的角是对顶角
14、m≠﹣1
15、24
16、1.
17、
18、2(x+2)(x﹣2)
三、解答题(共78分)
19、(1)a=85,b=80,c=85;(2)初中部成绩较好;(3)初中代表队的方差为70,高中代表队的方差为160,初中代表队选手成绩较为稳定
20、①20,10;②α=2β
21、(1)400;(2)补全条形图见解析;C类所对应扇形的圆心角的度数为54°;(3)该校2000名学生中“家长和学生都未参与”有100人.
22、(1)=;(2)=,理由见解析;(1)1或1
23、(1)商场两次共购进这种运动服600套;(2)每套运动服的售价至少是200元
24、(1)36﹣35=2×35;(2)3n+1﹣3n=2×3n.
25、(1)见解析;(2);(3)
26、证明见解析
平均数(分)
中位数(分)
众数(分)
初中部
85
高中部
85
100
四川省成都市青羊区石室教育集团2023-2024学年数学九上期末质量跟踪监视模拟试题含答案: 这是一份四川省成都市青羊区石室教育集团2023-2024学年数学九上期末质量跟踪监视模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,下列实数,如图,二次函数的图象与轴交于点等内容,欢迎下载使用。
2023-2024学年四川省成都市青羊区石室中学九年级(上)期末数学试卷(含解析): 这是一份2023-2024学年四川省成都市青羊区石室中学九年级(上)期末数学试卷(含解析),共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
四川省成都市青羊区成都市石室中学2023-2024学年九年级上学期期末数学试题(含答案): 这是一份四川省成都市青羊区成都市石室中学2023-2024学年九年级上学期期末数学试题(含答案),共32页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。