江苏省苏州市长桥中学2023-2024学年八上数学期末学业质量监测模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每题4分,共48分)
1.下列各式中,能用完全平方公式进行因式分解的是.
A.B.C.D.
2.下列因式分解结果正确的是( )
A.B.
C.D.
3.把x2y-y分解因式,正确的是( )
A.y(x2-1)B.y(x+1)C.y(x-1)D.y(x+1)(x-1)
4.如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=5,则AE的长为( )
A.4B.8C.6D.10
5.如图,在钝角三角形中,为钝角,以点为圆心,长为半径画弧;再以点为圆心,长为半径画弧;两弧交于点连结的延长线交于点.下列结论:垂直平分;平分;是等腰三角形;是等边三角形.其中正确的有( )
A.个B.个C.个D.个
6.A,B两地相距80km,甲、乙两人骑车分别从A,B两地同时相向而行,他们都保持匀速行驶.如图,l1,l2分别表示甲、乙两人离B地的距离y(km)与骑车时间x(h)的函数关系.根据图象得出的下列结论,正确的个数是( )
①甲骑车速度为30km/小时,乙的速度为20km/小时;
②l1的函数表达式为y=80﹣30x;
③l2的函数表达式为y=20x;
④小时后两人相遇.
A.1个B.2个C.3个D.4个
7.如图,把纸片沿DE折叠,当点A落在四边形BCDE的外部时,则与和之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是( )
A.B.
C.D.
8.如图,在等腰△ABC中,AB=AC=10,BC=12,O是△ABC外一点,O到三边的垂线段分别为OD,OE,OF,且OD:OE:OF=1:4:4,则AO的长度是( )
A.10B.9C.D.
9.已知P1(-3,y1),P2(2,y2)是一次函数y=2x+1的图象上的两个点,则y1, y2的大小关系是( )
A.y1>y2B.y1<y2C.y1= y2D.不能确定
10.设△ABC的三边分别为a,b,c,满足下列条件的△ABC中,不是直角三角形的是( )
A.∠A+∠B=90°B.b2=a2-c2
C.∠A:∠B:∠C=3:4:5D.a:b:c=5:12:13
11.某种秋冬流感病毒的直径约为0.000000203米,该直径用科学记数法表示为( )米.
A.2.03×10﹣8B.2.03×10﹣7C.2.03×10﹣6D.0.203×10﹣6
12.如图,若△ABC≌△DEF,∠A=45°,∠F=35°,则∠E等于( )
A.35°B.45°C.60°D.100°
二、填空题(每题4分,共24分)
13.如图,两个四边形均为正方形,根据图形的面积关系,写出一个正确的等式__________.
14.有6个实数:,,,,,,其中所有无理数的和为______.
15.若实数、满足,则________.
16.如图,点D、E分别在线段AB,AC上,AE=AD,不添加新的线段和字母,要使△ABE≌△ACD,需添加的一个条件是 (只写一个条件即可).
17.分解因式:ab2﹣4ab+4a= .
18.现有八个大小相同的矩形,可拼成如图1、2所示的图形,在拼图2时,中间留下了一个边长为2的小正方形,则每个小矩形的面积是_____.
三、解答题(共78分)
19.(8分)如图,已知函数 y=x+1 的图象与 y 轴交于点 A,一次函数 y=kx+b 的图象经过点 B(0,﹣1),与x 轴 以及 y=x+1 的图象分别交于点 C、D,且点 D 的坐标为(1,n),
(1)则n= ,k= ,b= ;
(2)函数 y=kx+b 的函数值大于函数 y=x+1 的函数值,则x的取值范围是 ;
(3)求四边形 AOCD 的面积;
(4)在 x轴上是否存在点 P,使得以点 P,C,D 为顶点的三角形是直角三角形?若存在求出点 P 的坐标; 若不存在,请说明理由.
20.(8分)某单位欲从内部招聘管理人员一名,对甲乙丙三名候选人进行了笔试和面试两项测试,三人的测试成绩如下表所示:
根据录用程序,组织200名职工对三人利用投票推荐的方式进行民主评议,三人得票率(没有弃权,每位职工只能推荐1人)如图所示,每得一票记作1分.
(1)请算出三人的民主评议得分;
(2)根据实际需要,单位将笔试,面试,民主评议三项测试得分按4:3:3的比例确定个人成绩,那么谁将被录用?
21.(8分)已知,在平行四边形ABCD中,BD=BC,E为AD边的中点,连接BE;
(1)如图1,若AD⊥BD,,求平行四边形ABCD的面积;
(2)如图2,连接AC,将△ABC沿BC翻折得到△FBC,延长EB与FC交于点G,求证:∠BGC=∠ADB.
22.(10分)如图,已知中,,,点为的中点,如果点在线段上以的速度由点向点运动,同时,点在线段上由点向点运动.
(1)若点与点的运动速度相等,经过1秒后,与是否全等?请说明理由;
(2)若点与点的运动速度不相等,当点的运动速度为多少时,能使与全等?
23.(10分)阅读下列材料:
在学习“可化为一元一次方程的分式方程及其解法”的过程中,老师提出一个问题:若关于x的分式方程=1的解为正数,求a的取值范围.
经过独立思考与分析后,小杰和小哲开始交流解题思路如下:
小杰说:解这个关于x的分式方程,得x=a+1.由题意可得a+1>0,所以a>﹣1,问题解决.
小哲说:你考虑的不全面,还必须保证x≠1,即a+1≠1才行.
(1)请回答: 的说法是正确的,并简述正确的理由是 ;
(2)参考对上述问题的讨论,解决下面的问题:
若关于x的方程的解为非负数,求m的取值范围.
24.(10分)在中,,,点是线段上一动点(不与,重合).
(1)如图1,当点为的中点,过点作交的延长线于点,求证:;
(1)连接,作,交于点.若时,如图1.
①______;
②求证:为等腰三角形;
(3)连接CD,∠CDE=30°,在点的运动过程中,的形状可以是等腰三角形吗?若可以,请求出的度数;若不可以,请说明理由.
25.(12分)化简求值或解方程
(1)化简求值:(﹣x+1)÷,其中x=﹣2
(2)解方程: +=﹣1
26.(12分)在四边形ABCD中,AB=AD=8,∠A=60°,∠D=150°,四边形周长为32,求BC和CD的长度.
参考答案
一、选择题(每题4分,共48分)
1、A
2、D
3、D
4、B
5、C
6、D
7、C
8、D
9、B
10、C
11、B
12、D
二、填空题(每题4分,共24分)
13、
14、
15、1
16、∠B=∠C(答案不唯一).
17、a(b﹣1)1.
18、1.
三、解答题(共78分)
19、(1)2,3,-1;(2);(3)(4)或
20、(1)甲:50分;乙:80分;丙:70分;(2)丙
21、(1)4;(2)证明见解析.
22、 (1)全等;(2)不相等,当点的运动速度为时,能使与全等.
23、(1)小哲;分式的分母不为0;(2)m≥﹣6且m≠﹣2.
24、(1)证明见解析;(1)①110°;②证明见解析;(3)可以是等腰三角形,此时的度数为或.
25、(1)﹣2;(2)无解
26、BC=10;CD=1
江苏省苏州市工业园区星海实验中学2023-2024学年九上数学期末学业质量监测模拟试题含答案: 这是一份江苏省苏州市工业园区星海实验中学2023-2024学年九上数学期末学业质量监测模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,下列运算中,结果正确的是,已知,方程的解是等内容,欢迎下载使用。
2023-2024学年江苏省苏州市长桥中学九上数学期末质量检测试题含答案: 这是一份2023-2024学年江苏省苏州市长桥中学九上数学期末质量检测试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,如果两个相似三角形的面积比是1等内容,欢迎下载使用。
江苏省苏州市星港中学2023-2024学年数学九上期末学业质量监测模拟试题含答案: 这是一份江苏省苏州市星港中学2023-2024学年数学九上期末学业质量监测模拟试题含答案,共8页。试卷主要包含了下列事件中,是必然事件的是等内容,欢迎下载使用。