浙江省台州市“海山教育联盟”2023-2024学年八上数学期末达标检测模拟试题含答案
展开学校_______ 年级_______ 姓名_______
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每题4分,共48分)
1.如图,∠MAN=60°,若△ABC的顶点B在射线AM上,且AB=2,点C在射线AN上,当△ABC是直角三角形时,AC的值为( )
A.4B.2C.1D.4或1
2.如图,在中,,的垂直平分线交于点,交于点,连接,若,则的度数为( )
A.25°B.30°C.35°D.50°
3.若(x2-x+m)(x-8)中不含x的一次项,则m的值为( )
A.8B.-8C.0D.8或-8
4.如下图,点是的中点,,,平分,下列结论:
① ② ③ ④
四个结论中成立的是( )
A.①②④B.①②③C.②③④D.①③④
5.在中,,用尺规作图的方法在上确定一点,使,根据作图痕迹判断,符合要求的是( )
A.B.
C.D.
6.一次函数 的图象不经过的象限是( )
A.一B.二C.三D.四
7.有一张三角形纸片ABC,已知∠B=∠C=α,按下列方案用剪刀沿着箭头方向剪开,所剪下的三角形纸片不一定是全等图形的是( )
A.B.
C.D.
8.如图,AB∥ED,CD=BF,若△ABC≌△EDF,则还需要补充的条件可以是( )
A.AC=EFB.BC=DFC.AB=DED.∠B=∠E
9.如图,已知在正方形网格中,每个小方格都是边长为1的正方形, A、B两点在格点上,位置如图,点C也在格点上,且△ABC为等腰三角形,则点C的个数为( )
A.7B.8C.9D.10
10.如图,在中,,分别以顶点,为圆心,大于长为半径作弧,两弧交于点,,作直线交于点.若,,则长是( )
A.7B.8C.12D.13
11.下列计算中正确的是( ).
A.B.C.D.
12.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是( )
A.AB∥DC,AD∥BCB.AB=DC,AD=BC
C.AO=CO,BO=DOD.AB∥DC,AD=BC
二、填空题(每题4分,共24分)
13.勾股定理揭示了直角三角形三边之间的关系,其中蕴含着丰富的科学知识和人文价值.如图所示,是一棵由正方形和含角的直角三角形按一定规律长成的勾股树,树的主干自下而上第一个正方形和第一个直角三角形的面积之和为,第二个正方形和第二个直角三角形的面积之和为,…,第个正方形和第个直角三角形的面积之和为.
设第一个正方形的边长为1.
请解答下列问题:
(1)______.
(2)通过探究,用含的代数式表示,则______.
14.如图,在Rt△ABC中,两直角边长分别为a、b,斜边长为c.若Rt△ABC的面积为3,且a+b=1.则(1)ab= ; (2)c= .
15.若,则______.
16.已知一个角的补角是它余角的3倍,则这个角的度数为_____.
17.一种花粉颗粒的直径约为0.0000065米,将0.0000065用科学记数法表示为___.
18.若a﹣b=1,ab=2,那么a+b的值为_____.
三、解答题(共78分)
19.(8分)如图,在中,,,点是边上的动点(点与点、 不重合),过点作交射线于点 ,联结,点是的中点,过点 、作直线,交于点,联结、.
(1)当点在边上,设, .
①写出关于 的函数关系式及定义域;
②判断的形状,并给出证明;
(2)如果,求的长.
20.(8分)如图,已知中,,,,、是边上的两个动点,其中点从点开始沿方向运动,且速度为每秒,点从点开始沿方向运动,且速度为每秒,它们同时出发,设出发的时间为秒.
(1)当秒时,求的长;
(2)求出发时间为几秒时,是等腰三角形?
(3)若沿方向运动,则当点在边上运动时,求能使成为等腰三角形的运动时间.
21.(8分)计算:
(1)(﹣a1)3•4a (1)1x(x+1)+(x+1)1.
22.(10分)某业主贷款88000元购进一台机器,生产某种产品,已知产品的成本是每个5元,售价是每个8元,应付的税款和其他费用是售价的10%,若每个月能生产、销售8000个产品,问至少几个月后能赚回这台机器贷款?(用列不等式的方法解决)
23.(10分)如图,在△ABC中,AB=AC=2,∠B=∠C=40°,点D在线段BC上运动(点D不与点B、C重合),连接AD,作∠ADE=40°,DE交线段AC于点E.
(1)当∠BDA=110°时,∠EDC= °,∠DEC= °;点D从B向C的运动过程中,∠BDA逐渐变 (填“大”或“小”);
(2)当DC等于多少时,△ABD≌△DCE,请说明理由.
(3)在点D的运动过程中,求∠BDA的度数为多少时,△ADE是等腰三角形.
24.(10分)雨伞的中截面如图所示,伞骨AB=AC,支撑杆OE=OF,AE=AB,AF=AC,当O沿AD滑动时,雨伞开闭,问雨伞开闭过程中,∠BAD与∠CAD有何关系?说明理由.
25.(12分)某校九年级学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100个)为优秀.下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个):
经统计发现两班总成绩相等,只好将数据中的其他信息作为参考.根据要求回答下列问题:
(1)计算两班的优秀率;
(2)求两班比赛数据的中位数;
(3)求两班比赛数据的方差;
(4)根据以上三条信息,你认为应该把冠军奖状发给哪一个班级?简述理由.
26.(12分)已知:三角形ABC中,∠A=90°,AB=AC,D为BC的中点.
(1)如图,E、F分别是AB、AC上的点,且BE=AF,求证:△DEF为等腰直角三角形.
(2)若E、F分别为AB,CA延长线上的点,仍有BE=AF,其他条件不变,那么,△DEF是否仍为等腰直角三角形?画出图形,写出结论不证明.
参考答案
一、选择题(每题4分,共48分)
1、D
2、A
3、B
4、A
5、D
6、B
7、D
8、C
9、C
10、B
11、D
12、D
二、填空题(每题4分,共24分)
13、 (为整数)
14、6;
15、3或5或-5
16、45°
17、
18、±1.
三、解答题(共78分)
19、(1)①;②详见解析;(2)或
20、(1);(2);(3)5.5秒或6秒或6.6秒
21、 (2)-4a7; (2) 3x2+4x+2.
22、1个月
23、(1)30,110,小;(2)当DC=2时,△ABD≌△DCE,理由见解析;(3)∠BDA=80°或110°.
24、相等
25、(1)60%;40%;(2)甲班比赛数据的中位数是100,乙班比赛数据的中位数是97;(3)46.8;103.2;(4)应把冠军奖状给甲班.
26、(1)见解析;(2)见解析
1号
2号
3号
4号
5号
总成绩
甲班
100
98
110
89
103
500
乙班
89
100
95
119
97
500
浙江省台州市“海山教育联盟”2023-2024学年九上数学期末学业水平测试模拟试题含答案: 这是一份浙江省台州市“海山教育联盟”2023-2024学年九上数学期末学业水平测试模拟试题含答案,共7页。
浙江省台州市海山教育联盟2023-2024学年数学九年级第一学期期末统考试题含答案: 这是一份浙江省台州市海山教育联盟2023-2024学年数学九年级第一学期期末统考试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,下列方程中不是一元二次方程的是等内容,欢迎下载使用。
浙江省绍兴市诸暨市浣江教育集团2023-2024学年八上数学期末达标检测模拟试题含答案: 这是一份浙江省绍兴市诸暨市浣江教育集团2023-2024学年八上数学期末达标检测模拟试题含答案,共6页。试卷主要包含了计算等内容,欢迎下载使用。