湖南省长沙市一中学湘一南湖学校2023-2024学年数学八年级第一学期期末达标检测试题含答案
展开
这是一份湖南省长沙市一中学湘一南湖学校2023-2024学年数学八年级第一学期期末达标检测试题含答案,共8页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每题4分,共48分)
1.点P(3,)关于x轴对称的点的坐标是( )
A.(3,)B.(,)C.(3,4)D.(,4)
2.式子中x的取值范围是( )
A.x≥1且x≠2B.x>1且x≠2C.x≠2D.x>1
3.如图是一个三级台阶,它的每一级的长、宽和高分别是50 cm,30 cm,10 cm,A和B是这个台阶的两个相对的端点,A点上有一只壁虎,它想到B点去吃可口的食物,请你想一想,这只壁虎从A点出发,沿着台阶面爬到B点,至少需爬( )
A.13 cmB.40 cmC.130 cmD.169 cm
4.下列各数:3.1415926,﹣,,π,4.217,,2.1010010001…(相邻两个1之间依次增加1个0)中,无理数有( )
A.4个B.3个C.2个D.1个
5.方差:一组数据:2,,1,3,5,4,若这组数据的中位数是3,是这组数据的方差是( )
A.10B.C.2D.
6.如图,将甲图中的阴影部分无重叠、无缝隙得拼成乙图,根据两个图形中阴影部面积关系得到的等式是( )
A.a2+b2=(a+b)(a-b)B.a2+2ab+b2=(a+b)2
C.a2-2ab+b2=(a-b)2D.(a+b)2-(a-b)2=4ab
7.如图,用一条宽度相等的足够长的纸条打一个结(如图1所示),然后轻轻拉紧、压平就可以得到如图2所示的正五边形,图2中,的大小是( )
A.B.C.D.
8.如图,四边形ABCD中,对角线AC,BD相交于点O,下列条件不能判定这个四边形是平行四边形的是( )
A.,B.,
C.,D.,
9.已知A(a,b),B(c,d)是一次函数y=kx﹣3x+2图象上的不同两个点,m=(a﹣c)(b﹣d),则当m<0时,k的取值范围是( )
A.k<3B.k>3C.k<2D.k>2
10.如图所示,在中,,D为的中点,过点D分别向,作垂直线段、,则能直接判定的理由是( )
A.B.C.D.
11.下面的图形中对称轴最多的是( )
A.B.
C.D.
12.能说明命题“如果两个角互补,那么这两个角一个是锐角,另一个是钝角”为假命题的两个角是 ( )
A.120°,60°B.95°,105°C.30°,60°D.90°,90°
二、填空题(每题4分,共24分)
13.如果式子在实数范围内有意义,那么x的取值范围是____.
14.等腰三角形的一个外角为100°,则它的底角是______.
15.如图,在中,分别以点A和点C为圆心,大于长为半径画弧,两弧相交于点M、N;作直线MN分别交BC、AC于点D、点E,若,的周长为13cm,则的周长为________.
16.如图,等边的边长为,则点的坐标为__________.
17.如图,已知平分,且,若,则的度数是__________.
18.公元3世纪初,中国古代数学家赵爽注《周髀算经》时,创造了“赵爽弦图”.如图,设勾,弦,则小正方形ABCD的面积是____.
三、解答题(共78分)
19.(8分)列方程解应用题:
中华优秀传统文化是中华民族的“根”和“魂”,是我们必须世代传承的文化根脉、文化基因.为传承优秀传统文化,某校为各班购进《三国演义》和《水浒传》连环画若干套,其中每套《三国演义》连环画的价格比每套《水浒传》连环画的价格贵60元,用4800元购买《水浒传》连环画的套数是用3600元购买《三国演义》连环画套数的2倍,求每套《水浒传》连环画的价格.
20.(8分)如图,已知经过点M(1,4)的直线y = kx+b(k≠0)与直线y = 2x-3平行.
(1)求k,b的值;
(2)若直线y = 2x-3与x轴交于点A,直线y = kx+b交x轴于点B,交y轴于点C,求△MAC的面积.
21.(8分)如图1,△ABC中,AD是∠BAC的角平分线,若AB=AC+CD.那么∠ACB 与∠ABC有怎样的数量关系? 小明通过观察分析,形成了如下解题思路:
如图2,延长AC到E,使CE=CD,连接DE,由AB=AC+CD,可得AE=AB,又因为AD是∠BAC的平分线,可得△ABD≌△AED,进一步分析就可以得到∠ACB 与∠ABC的数量关系.
(1) 判定△ABD 与△AED 全等的依据是______________(SSS,SAS,ASA,AAS 从其中选择一个);
(2)∠ACB 与∠ABC的数量关系为:___________________
22.(10分),两种机器人都被用来搬运化工原料,型机器人每小时搬运的化工原料是型机器人每小时搬运的化工原料的1.5倍,型机器人搬运900所用时间比型机器人搬运800所用时间少1小时.
(1)求两种机器人每小时分别搬运多少化工原料?
(2)某化工厂有8000化工原料需要搬运,要求搬运所有化工原料的时间不超过5小时,现计划先由6个型机器人搬运3小时,再增加若干个型机器人一起搬运,请问至少要增加多少个型机器人?
23.(10分)如图,已知中,厘米,厘米,点为的中点.
(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.
①若点Q的运动速度与点P的运动速度相等,经过1秒后,与是否全等,请说明理由;
②若点Q的运动速度与点P的运动速度不相等, 与是否可能全等?若能,求出全等时点Q的运动速度和时间;若不能,请说明理由.
(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿三边运动,求经过多长时间点P与点Q第一次在的哪条边上相遇?
24.(10分)如图,AD是△ABC的角平分线,点F、E分别在边AC、AB上,连接DE、DF,且∠AFD+∠B=180°.
(1)求证:BD=FD;
(2)当AF+FD=AE时,求证:∠AFD=2∠AED.
25.(12分)列分式方程解应用题:北京第一条地铁线路于1971年1月15日正式开通运营.截至2017年1月,北京地铁共有19条运营线路,覆盖北京市11个辖区.据统计,2017 年地铁每小时客运量是2002年地铁每小时客运量的4倍,2017年客运240万人所用的时间比2002年客运240万人所用的时间少30小时,求2017年地铁每小时的客运量.
26.(12分)如图,点,,,在一条直线上,,,,求证:.
参考答案
一、选择题(每题4分,共48分)
1、C
2、A
3、C
4、B
5、B
6、C
7、B
8、D
9、A
10、D
11、B
12、D
二、填空题(每题4分,共24分)
13、
14、80°或50°
15、19cm
16、
17、25°
18、4
三、解答题(共78分)
19、每套《水浒传》连环画的价格为120元
20、(3)k = 3,b= 3;(3)3.2
21、SAS ∠ACB =2∠ABC
22、(1)型机器人每小时搬运,型机器人每小时搬运化工原料;
(2)1
23、(1)①,理由见解析;②秒,厘米/秒;(2)经过秒,点与点第一次在边上相遇
24、(1)证明见解析;(2)证明见解析.
25、24万人.
26、见解析
相关试卷
这是一份2023-2024学年湖南省长沙市开福区青竹湖湘一外国语学校九上数学期末达标测试试题含答案,共8页。试卷主要包含了若,则等内容,欢迎下载使用。
这是一份2023-2024学年湖南省长沙市怡雅学校数学九年级第一学期期末达标检测试题含答案,共8页。试卷主要包含了-2019的相反数是,一元二次方程的解为,一元二次方程的常数项是等内容,欢迎下载使用。
这是一份2023-2024学年湖南省长沙市一中学湘一南湖学校数学九年级第一学期期末检测模拟试题含答案,共9页。试卷主要包含了考生要认真填写考场号和座位序号,如图一段抛物线y=x2﹣3x等内容,欢迎下载使用。