达州市重点中学2023-2024学年数学八年级第一学期期末学业水平测试模拟试题含答案
展开
这是一份达州市重点中学2023-2024学年数学八年级第一学期期末学业水平测试模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,下列命题是真命题的有等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.A,B两地相距20,甲乙两人沿同一条路线从 地到 地,如图反映的是二人行进路程 ()与行进时间()之间的关系,有下列说法:①甲始终是匀速行进,乙的行进不是匀速的;②乙用了4个小时到达目的地;③乙比甲先出发1小时;④甲在出发4小时后被乙追上,在这些说法中,正确的有( )
A.1个B.2个C.3个D.4个
2.多边形每个外角为45°,则多边形的边数是( )
A.8B.7C.6D.5
3.已知,,,则、、的大小关系是( )
A.B.C.D.
4.如图,AC⊥BC,CD⊥AB,DE⊥BC,垂足分别为C,D,E,则下列说法不正确的是( )
A.BC是△ABC的高B.AC是△ABE的高
C.DE是△ABE的高D.AD是△ACD的高
5.在边长为的正方形中挖掉一个边长为的小正方形(),把余下的部分剪拼成一个矩形(如图),通过计算图形(阴影部分)的面积,验证了一个等式,则这个等式是( )
A.B.
C.D.
6.下列从左边到右边的变形,是因式分解的是( )
A.y2﹣2y+4=(y﹣2)2
B.10x2﹣5x=5x(2x﹣1)
C.a(x+y)=ax+ay
D.t2﹣16+3t=(t+4)(t﹣4)+3t
7.小明的妈妈在菜市场买回2斤萝卜、1斤排骨共花了41.4元,而两个月前买同重量的这两样菜只要36元,与两个月前相比,这次萝卜的单价下降了10%,但排骨单价却上涨了20%,设两个月前买的萝卜和排骨的单价分别为x元/斤,y元/斤,则可列方程为( )
A.B.
C.D.
8.如图,在中,AB=8,BC=6,AB、BC边上的高CE、AD交于点H,则AD与CE的比值是( )
A.B.
C.D.
9.下列各组数据分别是三角形的三边长,其中不能构成直角三角形的是( )
A.B.
C.D.
10.下列命题是真命题的有( )
①若a2=b2,则a=b;
②内错角相等,两直线平行.
③若a,b是有理数,则|a+b|=|a|+|b|;
④如果∠A=∠B,那么∠A与∠B是对顶角.
A.1个B.2个C.3个D.4个
11.低碳环保理念深入人心,共享单车已成为出行新方式.下列共享单车图标,是轴对称图形的是( )
A.B.C.D.
12.如图所示分别平分和,则的度数为( )
A.B.C.D.
二、填空题(每题4分,共24分)
13.如图,是等边三角形,AB=6,AD是BC边上的中线.点E在AC边上,且,则ED的长为____________.
14.函数的自变量的取值范围是.
15.如图,在中,,,是的中线,是的角平分线,交的延长线于点,则的长为_______.
16.如图,等腰△ABC中,AB=AC,折叠△ABC,使点A与点B重合,折痕为DE,若∠DBC=15°,则∠A的度数是______.
17.若边形的每个外角均为,则 的值是________.
18. “内错角相等,两直线平行”的逆命题是_____.
三、解答题(共78分)
19.(8分)解下列方程组:
20.(8分)在综合实践课上,老师以“含30°的三角板和等腰三角形纸片”为模具与同学们开展数学活动.
已知,在等腰三角形纸片ABC中,CA=CB=5,∠ACB=120°,将一块含30°角的足够大的直角三角尺PMN(∠M=90°,∠MPN=30°)按如图所示放置,顶点P在线段BA上滑动(点P不与A,B重合),三角尺的直角边PM始终经过点C,并与CB的夹角∠PCB=α,斜边PN交AC于点D.
(1)特例感知
当∠BPC=110°时,α= °,点P从B向A运动时,∠ADP逐渐变 (填“大”或“小”).
(2)合作交流
当AP等于多少时,△APD≌△BCP,请说明理由.
(3)思维拓展
在点P的滑动过程中,△PCD的形状可以是等腰三角形吗?若可以,请求出夹角α的大小;若不可以,请说明理由.
21.(8分)阅读以下内容解答下列问题.
七年级我们学习了数学运算里第三级第六种开方运算中的平方根、立方根,也知道了开方运算是乘方的逆运算,实际上乘方运算可以看做是“升次”,而开方运算也可以看做是“降次”,也就是说要“升次”可以用乘方,要“降次”可以用开方,即要根据实际需要采取有效手段“升”或者“降”某字母的次数.本学期我们又学习了整式乘法和因式分解,请回顾学习过程中的法则、公式以及计算,解答下列问题:
(1)对照乘方与开方的关系和作用,你认为因式分解的作用也可以看做是 .
(2)对于多项式x3﹣5x2+x+10,我们把x=2代入此多项式,发现x=2能使多项式x3﹣5x2+x+10的值为0,由此可以断定多项式x3﹣5x2+x+10中有因式(x﹣2),(注:把x=a代入多项式,能使多项式的值为0,则多项式一定含有因式(x﹣a)),于是我们可以把多项式写成:x3﹣5x2+x+10=(x﹣2)(x2+mx+n),分别求出m、n后再代入x3﹣5x2+x+10=(x﹣2)(x2+mx+n),就可以把多项式x3﹣5x2+x+10因式分解,这种因式分解的方法叫“试根法”.
①求式子中m、n的值;
②用“试根法”分解多项式x3+5x2+8x+1.
22.(10分)如图,点A、、、在同一直线上,,AF∥DE,.求证:.
23.(10分)阅读某同学对多项式进行因式分解的过程,并解决问题:
解:设,
原式(第一步)
(第二步)
(第三步)
(第四步)
(1)该同学第二步到第三步的变形运用了________(填序号);
A.提公因式法 B.平方差公式
C.两数和的平方公式 D.两数差的平方公式
(2)该同学在第三步用所设的的代数式进行了代换,得到第四步的结果,这个结果能否进一步因式分解?________(填“能”或“不能”).如果能,直接写出最后结果________.
(3)请你模仿以上方法尝试对多项式进行因式分行解.
24.(10分) “天生雾、雾生露、露生耳”,银耳是一种名贵食材,富含人体所需的多种氨基酸和微量元素,具有极高的药用价值和食用价值.某银耳培育基地的银耳成熟了,需要采摘和烘焙.现准备承包给甲和乙两支专业采摘队,若承包给甲队,预计12天才能完成,为了减小银耳因气候变化等原因带来的损失,现决定由甲、乙两队同时采摘,则可以提前8天完成任务.
(1)若单独由乙队采摘,需要几天才能完成?
(2)若本次一共采摘了300吨新鲜银耳,急需在9天内进行烘焙技术处理.已知甲、乙两队每日烘焙量相当,甲队单独加工(烘焙)天完成100吨后另有任务,剩下的200吨由乙队加工(烘焙),乙队刚好在规定的时间内完工.若甲、乙两队从采摘到加工,每日工资分别是600元和1000元.问:银耳培育基地此次需要支付给采摘队的总工资是多少?
25.(12分)下面有4张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长都是1,请在方格纸中分别画出符合要求的图形,所画图形各顶点必须与方格纸中小正方形的顶点重合,具体要求如下:
(1)画一个直角边长为4,面积为6的直角三角形.
(2)画一个底边长为4,面积为8的等腰三角形.
(3)画一个面积为5的等腰直角三角形.
(4)画一个边长为2,面积为6的等腰三角形.
26.(12分)如图,在等腰△ABC中,AC=BC,D,E分别为AB,BC上一点,∠CDE=∠A.
(1)如图1,若BC=BD,∠ACB=90°,则∠DEC度数为_________°;
(2)如图2,若BC=BD,求证:CD=DE;
(3)如图3,过点C作CH⊥DE,垂足为H,若CD=BD,EH=1,求DE-BE的值.
参考答案
一、选择题(每题4分,共48分)
1、A
2、A
3、D
4、C
5、A
6、B
7、A
8、A
9、D
10、D
11、D
12、C
二、填空题(每题4分,共24分)
13、1
14、x≠1
15、6
16、50°
17、
18、两直线平行,内错角相等
三、解答题(共78分)
19、
20、(1)40°,小;(2)当AP=5时,△APD≌△BCP,理由详见解析;(3)当α=45°或90°时,△PCD是等腰三角形.
21、(1)降次;(2)①m=﹣3,n=﹣5;②(x+1)(x+2)2.
22、详见解析.
23、(1)C;(2)能,;(3)
24、(1)乙队单独需要6天才能完成;(2)银耳培育基地此次需要支付给采摘队的总工资14200元
25、(1)画图见解析;(2)画图见解析;(3)画图见解析;(4)画图见解析.
26、(1)67.5;(1)证明见解析;(3)DE-BE=1.
相关试卷
这是一份烟台市重点中学2023-2024学年八年级数学第一学期期末学业水平测试模拟试题含答案,共6页。试卷主要包含了8的平方根为等内容,欢迎下载使用。
这是一份2023-2024学年潮州市重点中学八年级数学第一学期期末学业水平测试模拟试题含答案,共7页。试卷主要包含了下列图形具有稳定性的是,若是完全平方式,则的值为,已知等内容,欢迎下载使用。
这是一份2023-2024学年赣州市重点中学八年级数学第一学期期末学业水平测试模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔,下列四位同学的说法正确的是,点的位置在等内容,欢迎下载使用。