江苏省南通市实验中学2023-2024学年上学期九年级数学期末模拟测试卷
展开
这是一份江苏省南通市实验中学2023-2024学年上学期九年级数学期末模拟测试卷,共11页。试卷主要包含了抛物线y=﹣,已知△ABC的顶点A的坐标为等内容,欢迎下载使用。
1.抛物线y=﹣(x+1)2﹣1的顶点坐标是( )
A.(﹣1,﹣1)B.(1,﹣1)C.(﹣1,1)D.(1,1)
2.若反比例函数y= EQ \F(k-1,x) 的图象经过点(﹣1,2),则k的值是( )
A.1B.﹣2C.﹣1D.3
3.如图,△ABC内接于⊙O,∠A=30°,则∠BOC的度数为( )
A.30°B.60°C.75°D.120°
(3) (5) (6) (8)
4.y是x的二次函数,其对应值如下表:
下列叙述不正确的是( )
A.该二次函数的图象的对称轴是直线x=1B.m=1
C.当x>3时,y随x的增大而增大 D.图象与x轴有两个公共点
5.如图,△ABC∽△ADE,且BC=2DE,则S四边形BEDC:S△ABC的值为( )
A.1:4B.3:4C.2:3D.1:2
6.如图,点O是△ABC的内心,也是△DBC的外心.若∠A=84°,则∠D的度数为( )
A.42°B.66°C.76°D.82°
7.已知△ABC的顶点A的坐标为(0,﹣1),若以原点O为位似中心画△A1B1C1,使△A1B1C1与△ABC的相似比为2:1,则点A1的坐标为( )
A.(0,﹣2)或(0,2)B.(0,﹣2)
C.(2,2)D.(2,2)或(2,﹣2)
8.如图①所示,一张纸片上有一个不规则的图案(图中画图部分),小雅想了解该图案的面积是多少,她采取了以下的办法:用一个长为5m,宽为3m的长方形,将不规则图案围起来,然后在适当位置随机地向长方形区域扔小球,并记录小球在不规则图案上的次数(球扔在界线上或长方形区域外不计入试验结果),她将若干次有效试验的结果绘制成了图②所示的折线统计图,由此她估计此不规则图案的面积大约为( )
A.6m2B.5m2C.4m2D.3m2
(9) (10)
9.如图,Rt△ABC中,∠C=90°,AB=5,AC=4,D是边AC上一动点(不与A,C两点重合),沿A→C的路径移动,过点D作ED⊥AC,交AB于点E,将△ADE沿直线DE折叠得到△A'DE.若设AD=x,△A'DE与△ABC重叠部分的面积为y,则下列图象能大致反映y与x之间函数关系的是( )
A.B.
C.D.
10.如图,正方形ABCD的顶点分别在函数y= k1x(x>0)和y= k2x(x>0)的图象上,若BD∥y轴,点C的纵坐标为4,则k1+k2的值为( )
A.26B.28C.30D.32
二.填空题(本大题共8小题,第11-12题每小题3分,第13-18题每小题4分,共30分)
11.若反比例函数y= EQ \f(1-m,x) 的图象在第二、四象限,则m的取值范围是 .
12.若圆锥的底面半径长2 cm,母线长3 cm,则该圆锥的侧面积为 cm2.
13. 3tan30°﹣tan45°+2sin60°= .
14. 抛物线y=﹣x2+bx+c的部分图象如图所示,若y≥0,则x的取值范围是 .
(14) (15) (16)
15.如图,已知△ABC∽△AMN,点M是AC的中点,AB=6,AC=8,则AN= .
16.某轮船由西向东航行,在A处测得小岛P的方位是北偏东75°,又继续航行7海里后,在B处测得小岛P的方位是北偏东60°,若轮船继续向正东方向行驶,则轮船与小岛P的最短距离 海里.
(17) (18)
17.如图,在边长为1的正方形网格中,AN与CM相交于点P,则cs∠CPN的值为 ;
18.如图,正方形ABCD中,E,F分别在边AD,CD上,AF,BE相交于点G,若AE=3ED,DF=CF,则 eq \f(AG,GF) = .
三.解答题(本大题共8小题,共90分)
19. (10分)如图,△ABC的顶点都在网格点上.
(1)以点O为位似中心,把△ABC按2:1放大在y轴的左侧,
画出放大后的△DEF;
(2)点A的对应点D的坐标是 ;
(3)S△ABO:S四边形ABED= .
20.(10分)中国古代有着辉煌的数学成就,《周髀算经》,《九章算术》,《海岛算经》,《孙子算经》等是我国古代数学的重要文献.
(1)小聪想从这4部数学名著中随机选择1部阅读,则他选中《九章算术》的概率为 ;
(2)某中学拟从这4部数学名著中选择2部作为“数学文化”校本课程学习内容,求恰好选中《九章算术》和《孙子算经》的概率.
21.(10分)如图,已知△ABC是等边三角形,以AB为直径作⊙O,交BC边于点D,交AC边于点F,作DE⊥AC于点E.
(1)求证:DE是⊙O的切线;
(2)若△ABC的边长为4,求弧DF的长度
22.(10分)已知一次函数y1=kx+b(k≠0)与反比例函数y2= mx(m≠0)的图象交于A(2,3),B(﹣6,n)两点.
(1)求一次函数和反比例函数的解析式;
(2)请根据图象直接写出当y1>y2时,自变量x的取值范围.
23. (12分)元旦期间,某宾馆有50个房间供游客居住,当每个房间每天的定价为180元时,房间会全部住满;当每个房间每天的定价每增加10元时,就会有一个房间空闲.如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用.
(1)若房价定为200元时,求宾馆每天的利润;
(2)房价定为多少时,宾馆每天的利润最大?最大利润是多少?
24.(12分)如图,在平行四边形ABCD中,E为BC边上一点连接DE,F为线段DE上一点,且∠AFE=∠B
(1)求证:△ADF∽△DEC;
(2)若AB=8,AD=63,AF=43,求DE的长.
25.(13分)已知抛物线y=x2+bx+c(b,c为常数)经过点(﹣1,8),(4,3).
(1)求该抛物线的解析式;
(2)若点(t,y1),(t+1,y2)在该抛物线上,当t>2时,试比较y1与y2的大小;
(3)点A(m,n)为该抛物线上一点,当2m﹣n取得最大值时,求点A的坐标.
26.(13分)如图1,矩形ABCD中,AB=5,AD=3,将△ABC绕点A旋转到△AB'C'位置,设AC'交直线CD于点M.
(1)当点B'恰好落在DC边上时,
tan∠AB'D= ;
求△AB'C'与矩形ABCD重叠部分的面积;
(2)如图2,当点C、B'、C'恰好在一直线上时,求DM的长度.
初三数学限时作业1.9答案与评分标准
一.选择题(本大题共10小题,每小题3分,共30分)
二.填空题(本大题共8小题,第11-12题每小题3分,第13-18题每小题4分,共30分)
11. m>1 12. 6π 13. 2 EQ \r(,3)-1 14. -3≤x≤1
15. EQ \f(16,3) 16. EQ \F(7,2) 17. EQ \f( EQ \r(2),2) 18. EQ \f(6,5)
三.解答题(本大题共8小题,共90分)
19.(本小题满分10分)
(1)如图所示,△DEF即为所求;
············································································· 4 分
(2)点A的对应点D的坐标是(﹣2,6),
故答案为:(﹣2,6);································································································ 7 分
(3)由题可得,AB∥DE,
∴△ABO∽△DEO,
又∵位似比为2:1,
∴S△ABO:S△DEO=1:4,
∴S△ABO:S四边形ABED=1:3.
故答案为:1:3.······································································································ 10 分
(本小题满分10分)
(1)小聪想从这4部数学名著中随机选择1部阅读,则他选中《九章算术》的概率为.
故答案为;···················································································································· 4 分
(2)将四部名著《周髀算经》,《九章算术》,《海岛算经》,《孙子算经》分别记为A,B,C,D,记恰好选中《九章算术》和《孙子算经》为事件M.
根据题意可以画出如下的树状图:
···························································· 7 分
由树状图可以看出,所有可能的结果有12种,并且这12种结果出现的可能性相等,
所有可能的结果中,满足事件M的结果有2种,即BD,DB,
∴P(M)==.······································································································ 10 分
(本小题满分10分)
(1)证明:如图1,连接OD,
∵△ABC是等边三角形,
∴∠B=∠C=60°.
∵OB=OD,
∴∠ODB=∠B=60°.
∵DE⊥AC,
∴∠DEC=90°.
∴∠EDC=30°.
∴∠ODE=90°.
∴DE⊥OD于点D.
∵点D在⊙O上,
∴DE是⊙O的切线;······································································································· 5 分
(2)解:连接OF,
∵△ABC是等边三角形,
∴∠B=∠A=60°.
∵OB=OD,
∴△OBD是等边三角形,
∴∠BOD=60°.
同理:∠AOF=60°
∴∠DOF=60°.
∵△ABC是边长为4,
∴DO=AO=12AB=2.
∴弧DF=60π∙2180= EQ \f(2,3)π . ······································································································· 10 分
(本小题满分10分)
(1)∵反比例函数(m≠0)的图象过点A(2,3),
∴m=2×3=6,
∴反比例函数关系式为y=,·················································································· 3 分
当x=﹣6时,y==﹣1,
∴点B(﹣6,﹣1).
又∵一次函数y=kx+b(k≠0)的图象过点A(2,3),B(﹣6,﹣1).
∴,
解得,
∴一次函数的关系式为:y=x+2,·················································································· 6 分
∴反比例函数关系式为,一次函数关系式为;
(2)-6<x<0或x>2.······································································································ 10 分
(本小题满分12分)
(1)若房价定为200元时,宾馆每天的利润为:(200﹣20)×(50﹣2)=8640(元),
答:宾馆每天的利润为8640;······················································································· 4 分
(2)设总利润为y元,则y=(50﹣)(x﹣20)············································ 8 分
=﹣x2+70x+1360
=﹣(x﹣350)2+10890
故房价定为350时,宾馆每天的利润最大,最大利润是10890元.························ 12 分
(本小题满分12分)
(1)证明:∵四边形ABCD是平行四边形,
∴∠C+∠B=180°,∠ADF=∠DEC.
∵∠AFD+∠AFE=180°,∠AFE=∠B,
∴∠AFD=∠C,
∴△ADF∽△DEC;······································································································· 6 分
(2)∵四边形ABCD是平行四边形,
∴CD=AB=8,
∵△ADF∽△DEC,
∴,
∴.·················································································· 12 分
(本小题满分13分)
(1)把(﹣1,8),(4,3)代入得,
,
解得.
所以,该抛物线的解析式为y=x2﹣4x+3;··································································· 4 分
(2)对称轴为x=﹣=2,
∵a>0,
∴当x>2时,y随x的增大而增大.
∵t<t+1,
∴y1<y2;························································································································· 8 分
(3)∵点A(m,n)为该抛物线上一点,
∴n=m2﹣4m+3,
设w=2m﹣n=2m﹣(m2﹣4m+3)=﹣m2+6m﹣3=﹣(m﹣3)2+6,
∴当m=3时,w最大,
此时A(3,0).··············································································································· 13 分
(本小题满分13分)
(1)
tan∠AB'D= EQ \f(3,4) ;···································································································· 4 分
②作C′H⊥DC于H,如图:
∵△ABC绕点A旋转到△AB'C',
∴AB'=AB=5,B'C'=BC=3,
∴DB'===4,
∵∠C'B'H=90°﹣∠DB'A=∠DAB',∠CHB'=90°=∠D,
∴△C′HB′∽△B′DA,
∴=即=,
∴C'H=,
∴===,
∵S△AB'C'=S△B'C'M+S△AB'M=AB'•B'C'=,
∴S△AB'M=S△AB'C'=;
∴△AB'C'与矩形ABCD重叠部分的面积是;······················································· 8 分
(2)作CN⊥AC',如图:
∵△ABC绕点A旋转到△AB'C',
∴AB'=AB=5,AC'=AC==,∠AB'C'=∠B=90°=∠AB'C,B'C'=BC=3,
∴CC'=2B'C'=6,
∵2S△ACC'=CC'•AB'=AC'•CN,
∴CN===,
∵∠CMN=∠AMD,∠CNM=∠ADM=90°,
∴△CMN∽△AMD,
∴,
∴,即CN2•AM2=AD2•CM2,
设DM=x,
∴()2×(x2+32)=32(x+5)2,
化简得:33x2﹣170x+25=0,
解得:x=5(舍去)或x=,
答:DM的长度为.······························································································· 13 分
x
…
﹣1
0
1
2
3
4
…
y
…
4
m
0
1
4
9
…
题号
1
2
3
4
5
6
7
8
9
10
选项
A
C
B
D
B
B
A
A
D
D
相关试卷
这是一份江苏省南通市港闸区南通市北城中学2023-2024学年九上数学期末调研模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔,把二次函数化为的形式是,一元二次方程的根的情况是,方程的根是等内容,欢迎下载使用。
这是一份江苏省镇江市丹阳实验中学2023-2024学年九上数学期末监测模拟试题含答案,共7页。试卷主要包含了如图,已知,且,则等内容,欢迎下载使用。
这是一份2023-2024学年江苏省南通市第一初级中学八上数学期末检测模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,下列命题中,是真命题的是,如果,那么代数式的值是.,把通分,下列计算正确的是等内容,欢迎下载使用。