![第4章 图形与坐标 浙教版数学八年级上册素养综合检测(含解析)第1页](http://www.enxinlong.com/img-preview/2/3/15203339/0-1705019750318/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![第4章 图形与坐标 浙教版数学八年级上册素养综合检测(含解析)第2页](http://www.enxinlong.com/img-preview/2/3/15203339/0-1705019750377/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![第4章 图形与坐标 浙教版数学八年级上册素养综合检测(含解析)第3页](http://www.enxinlong.com/img-preview/2/3/15203339/0-1705019750406/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
第4章 图形与坐标 浙教版数学八年级上册素养综合检测(含解析)
展开
这是一份第4章 图形与坐标 浙教版数学八年级上册素养综合检测(含解析),共13页。
第4章 • 素养综合检测卷(考查范围:第4章 时间:60分钟 满分:100分)一、选择题(每小题4分,共32分)1. (2023浙江宁波外国语学校期中)根据下列表述,能确定位置的是( )A. 北偏东30° B. 民光影院2排C. 中山西路 D. 东经120°,北纬35°2. (2022浙江湖州长兴期末)在平面直角坐标系中,若点A(a,b)在第二象限,则点B(ab,-b)所在的象限是( )A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限3. (2023浙江杭州观成教育集团期中)点P(m+3,m+1)在y轴上,则P点的坐标为( )A. (0,-2) B. (0,-4) C. (4,0) D. (2,0)4. (2023浙江宁波鄞州蓝青学校期中)在平面直角坐标系中,若点M(a+2,a-1)在第四象限,且点M到x轴的距离为2,则点M的坐标为( )A. (1,-2) B. (5,2) C. (2,-1) D. (-2,-3)5. (2022浙江杭州采荷中学期中)下列命题是真命题的是( )A. 若ab=0,则P(a,b)为坐标原点B. 若A(-1,-2),且AB平行于x轴,AB=5,则B点的坐标为(4,-2)C. 点P(1,2)关于原点对称的点的坐标是(-1,-2)D. 若关于x的一元一次不等式组x-a>0,1-2x>x-2无解,则a的取值范围是a>16. (2022青海中考改编)如图,A(2,0),AB=3,以点A为圆心,AB长为半径画弧交x轴负半轴于点C,则点C的坐标为( )A. (3,0) B. (1,0) C. (-1,0) D. (-3,0)7. (2023浙江宁波慈溪文锦书院期中)如图,每个小正方形的边长均为1,在所给网格中按下列要求操作:(1)在网格中建立平面直角坐标系,使A点的坐标为(4,2),B点的坐标为(1,-1);(2)在第一象限内找一格点C,使点C与线段AB构成一个以AB为底的等腰三角形,且腰长是无理数.此时C点的坐标是( )A. (2,1) B. (1,2) C. (2,2) D. (1,3)8. (2021河南郑州期末)在平面直角坐标系中,对△ABC进行如图所示的循环往复的轴对称变换,若原来点A的坐标是(1,2),则经过2 021次变换后点A的对应点的坐标为( )A.(1,-2) B.(-1,-2) C.(-1,2) D.(1,2)二、填空题(每小题4分,共24分)9. (2022山东烟台中考)观察如图所示的象棋棋盘,若“兵”所在的位置用(1,3)表示,“炮”所在的位置用(6,4)表示,那么“帅”所在的位置可表示为 . 10. (2023浙江绍兴蕺山外国语学校期末)在平面直角坐标系中,点M(a,b)与点N(3,-1)关于x轴对称,则a+b的值为 .11. (2023浙江杭州临安石门中心学校期末模拟)在平面直角坐标系中,将点A(a,1)先向右平移3个单位,再向下平移2个单位,得到点B(5,b),则ab的值为 .12. 已知点A(2,0),B(-2,0),点P(0,t)是y轴上一动点,当△ABP为直角三角形时,点P的坐标为 . 13. (2023浙江宁波江北实验中学期中)如图,平面直角坐标系中有一正方形OABC,点C的坐标为(-2,-1),则点B的坐标为 . 14. 【代数推理】如图,在直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3,已知A(1,3),A1(3,3),A2(5,3),A3(7,3),B(2,0),B1(4,0),B2(8,0),B3(16,0). (1)观察每次变换前后的三角形有何变化,找出规律,按此变换规律再将△OA3B3变换成△OA4B4,则A4的坐标是 ,B4的坐标是 ; (2)若按(1)找到的规律将△OAB进行n次变换,得到△OAnBn,比较每次变换时三角形顶点有何变化,找出规律,推测An的坐标是 ,Bn的坐标是 . 三、解答题44分)15. (2023浙江宁波余姚实验学校期中)(8分)已知点P(2m+4,m-1),试分别根据下列条件,求出点P的坐标.(1)点P在过点A(-2,-3),且与y轴平行的直线上;(2)点P在第四象限内,且到x轴的距离是到y轴距离的一半.16. (10分)在平面直角坐标系中,△ABC的位置如图所示.(1)点A关于x轴对称的点的坐标为 ,点B关于原点对称的点的坐标为 ; (2)将△ABC向右平移4个单位长度,再向上平移3个单位长度得到△A1B1C1,其中A、B、C分别和A1、B1、C1对应,画出△A1B1C1,并求点A1的坐标;(3)在x轴上找一点P,使得点P到B、C两点的距离相等,则点P的坐标为 ; (4)在y轴上找一点Q,使得△BCQ与△ABC的面积相等,求点Q的坐标.17. (2023浙江宁波镇海尚志中学期中)(12分)如图,在平面直角坐标系xOy中,三角板的直角顶点P的坐标为(1,1),三角板绕点P在坐标平面内旋转,一条直角边与x轴的正半轴交于点A,另一条直角边与y轴交于点B.(1)连结AB,请判断△PAB是什么三角形,并说明理由;(2)在三角板绕点P旋转的过程中,OA+OB是定值吗?若是,请求出定值;若不是,请说明理由;(3)当△POA为等腰三角形时,请直接写出所有满足条件的点B的坐标.18. (2023浙江兰溪外国语中学期中)(14分)在平面直角坐标系xOy中,对于给定的两点P,Q,若存在点M,使得△MPQ的面积等于k(S△MPQ=k),则称点M为线段PQ的“k值面积点”,例如:对于给定的两点P,Q,若存在点M,使得△MPQ的面积等于2(S△MPQ=2),则称点M为线段PQ的“2值面积点”.解答下列问题:如图,在平面直角坐标系xOy中,点P的坐标为(2,0).(1)在点A(-1,1),B(-1,2),C(2,-4) 中,线段OP的“1值面积点”是 ; (2)已知点D(0,t),E(0,t+3),当线段DE上存在线段OP的“5值面积点”时,求t的取值范围;(3)已知点G(2,a),H(2,b),且a,b满足2a+3b+m=0,3a+2b+m=-5,点M,N是线段GH的两个“4值面积点”,点M的纵坐标是5,若S△OMN=3S△GHN,且MN∥GH,直接写出点N的坐标.答案全解全析1. D 选项A中缺少距离,不能确定位置,故不符合题意;选项B中缺少列数,不能确定位置,故不符合题意;选项C不能确定位置,不符合题意;选项D中经、纬度可以确定位置,符合题意.故选D.2. C ∵点A(a,b)在第二象限,∴a0,∴ab
![文档详情页底部广告位](http://www.enxinlong.com/img/images/257d7bc79dd514896def3dc0b2e3f598.jpg)