四川省南充市2024届高三上学期高考适应性考试(一诊)数学(理)试题(Word版附答案)
展开注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。
3.考试结束后,将答题卡交回。
一、单项选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.抛物线的准线方程为( )
A.B.C.D.
2.当时,复数在复平面内对应的点位于( )
A.第一象限B.第二象限C.第三象限D.第四象限
3.已知正方形的边长为1,则( )
A.0B.C.D.4
4.已知直线m,n和平面,,,则“”是“”的( )条件
A.充分不必要B.必要不充分C.充分必要D.既不充分也不必要
5.已知全集,集合,,则能表示A,B,U关系的图是( )
A.B.
C.D.
6.某商品的地区经销商对2023年1月到5月该商品的销售情况进行了调查,得到如下统计表.发现销售量y(万件)与时间x(月)成线性相关,根据表中数据,利用最小二乘法求得y与x的回归直线方程为:.则下列说法错误的是( )
A.由回归方程可知2024年1月份该地区的销售量为6.8万件
B.表中数据的样本中心点为
C.
D.由表中数据可知,y和x成正相关
7.二项式的展开式中常数项为( )
A.B.60C.210D.
8.已知:,,则下列说法中错误的是( )
A.B.C.D.
9.如图,正方体的棱长为2,E,F分别为,的中点,则平面截正方体所得的截面面积为( )
A.B.C.9D.18
10.如图1是函数的部分图象,经过适当的平移和伸缩变换后,得到图2中的部分图象,则( )
图1 图2
A.
B.
C.方程有4个不相等的实数解
D.的解集为,
11.已知双曲线的左右焦点分别为,,左右顶点分别为,,P为双曲线在第一象限上的一点,若,则( )
A.B.2C.5D.
12.已知函数()有两个不同的零点,(),下列关于,的说法正确的有( )个
①②③④
A.1B.2C.3D.4
二、填空题:本题共4小题,每小题5分,共20分。
13.满足约束条件的平面区域的面积为________.
14.已知函数为R上的奇函数,且,则________.
15.已知圆台的上下底面半径分别为和,若存在一个球同时与该圆台的上、下底面及侧面都相切,则该圆台的体积为________.
附:圆台体积公式为:
16.如图,在中,,,P为内一点,且,则________.
三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤,第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.
(一)必考题:共60分
17.已知数列是首项为2的等比数列,且是和的等差中项.
(1)求的通项公式;
(2)若数列的公比,设数列满足,求的前2023项和.
18.2023年秋季,支原体肺炎在全国各地流行,该疾病的主要感染群体为青少年和老年人,某市医院传染病科在该市各医院某段时间就医且年龄在70岁以上的老年人中随机抽查了200人的情况,并将调查结果整理如下:
(1)是否有99.5%的把握认为70岁以上老人感染支原体肺炎与自身有慢性疾病有关?
(2)现从感染支原体肺炎的60位老人中按分层抽样的方式抽出6人,再从6人中随机抽出4人作为医学研究对象并免费治疗.按以往的经验,有慢性疾病的老人每人的研究治疗费用为2万元,没有慢性疾病的老人每人的研究治疗费用为1万元,记抽出的这4人产生的研究治疗总费用为(单位:万元),求的分布列及数学期望.
附表:
参考公式:(其中)
19.如图,在四棱锥中,平面,,,.
(1)求证:平面;
(2)若,二面角的正切值为,求直线与平面所成角的正弦值.
20.设函数(e为自然对数的底数),函数与函数的图象关于直线对称.
(1)设函数,若时,恒成立,求m的取值范围;
(2)证明:与有且仅有两条公切线,且图象上两切点横坐标互为相反数.
21.如图,椭圆的四个顶点为A,B,C,D,过左焦点且斜率为k的直线交椭圆E于M,N两点.
(1)求四边形的内切圆的方程;
(2)设,连结,并延长分别交椭圆E于P,Q两点,设的斜率为.则是否存在常数,使得恒成立?若存在,求出的值;若不存在,说明理由.
(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.
22.在直角坐标系中,直线的参数方程为(t为参数,),把绕坐标原点逆时针旋转得到,以坐标原点O为极点,x轴正半轴为极轴,取相同的单位长度建立极坐标系.
(1)写出,的极坐标方程;
(2)若曲线的极坐标方程为,且与交于点A,与交于点B(A,B与点O不重合),求面积的最大值.
23.已知函数.
(1)若恒成立,求a取值范围;
(2)若的最大值为M,正实数a,b,c满足:,求的最大值.
时间x(月)
1
2
3
4
5
销售量y(万件)
1
1.6
2.0
a
3
有慢性疾病
没有慢性疾病
合计
未感染支原体肺炎
60
80
140
感染支原体肺炎
40
20
60
合计
100
100
200
0.15
0.10
0.05
0.025
0.010
0.005
0.001
k
2.072
2.706
3.841
5.024
6.635
7.879
10.828
四川省南充市2024届高三高考适应性考试(一诊)考试数学(理)试题及参考答案: 这是一份四川省南充市2024届高三高考适应性考试(一诊)考试数学(理)试题及参考答案,文件包含四川省南充市2024届高三高考适应性考试一诊考试数学理试题docx、南充一诊理科数学答案pdf等2份试卷配套教学资源,其中试卷共14页, 欢迎下载使用。
四川省南充市2024届高三上学期高考适应性考试(一诊)数学(文)试题(Word版附答案): 这是一份四川省南充市2024届高三上学期高考适应性考试(一诊)数学(文)试题(Word版附答案),共15页。试卷主要包含了考试结束后,将答题卡交回,满足约束条件的平面区域的面积为,已知为第二象限角,,则等内容,欢迎下载使用。
四川省南充市2024届高三高考适应性考试(一诊)考试数学(理)试题: 这是一份四川省南充市2024届高三高考适应性考试(一诊)考试数学(理)试题,文件包含四川省南充市2024届高三高考适应性考试一诊考试数学理试题docx、南充一诊理科数学答案pdf等2份试卷配套教学资源,其中试卷共14页, 欢迎下载使用。