|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022年福建高考数学真题及答案
    立即下载
    加入资料篮
    2022年福建高考数学真题及答案01
    2022年福建高考数学真题及答案02
    2022年福建高考数学真题及答案03
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年福建高考数学真题及答案

    展开
    这是一份2022年福建高考数学真题及答案,共27页。

    2022年普通高等学校招生全国统一考试
    数学
    本试卷共4页,22小题,满分150分.考试用时120分钟.
    注意事项:
    1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名、考生号、考场号和座位号填写在答题卡上.用2B铅笔将试卷类型(A)填涂在答题卡相应位置上.将条形码横贴在答题卡右上角“条形码粘贴处”.
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.
    3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.
    4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.
    一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
    1. 若集合,则()
    A. B.
    C. D.
    2. 若,则()
    A. B. C. 1D. 2
    3. 在中,点D在边AB上,.记,则()
    A. B. C. D.
    4. 南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔时,相应水面的面积为;水位为海拔时,相应水面的面积为,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔上升到时,增加的水量约为()()
    A. B. C. D.
    5. 从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为()
    A. B. C. D.
    6. 记函数最小正周期为T.若,且的图象关于点中心对称,则()
    A. 1B. C. D. 3
    7. 设,则()
    A. B. C. D.
    8. 已知正四棱锥的侧棱长为l,其各顶点都在同一球面上.若该球的体积为,且,则该正四棱锥体积的取值范围是()
    AB.
    C. D.
    二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.
    9. 已知正方体,则()
    A. 直线与所成的角为B. 直线与所成的角为
    C. 直线与平面所成角为D. 直线与平面ABCD所成的角为
    10. 已知函数,则()
    A有两个极值点B. 有三个零点
    C. 点是曲线的对称中心D. 直线是曲线的切线
    11. 已知O为坐标原点,点在抛物线上,过点的直线交C于P,Q两点,则()
    A. C的准线为B. 直线AB与C相切
    C. D.
    12. 已知函数及其导函数的定义域均为,记,若,均为偶函数,则()
    A. B. C. D.
    三、填空题:本题共4小题,每小题5分,共20分.
    13. 的展开式中的系数为________________(用数字作答).
    14. 写出与圆和都相切的一条直线的方程________________.
    15. 若曲线有两条过坐标原点的切线,则a的取值范围是________________.
    16. 已知椭圆,C的上顶点为A,两个焦点为,,离心率为.过且垂直于的直线与C交于D,E两点,,则的周长是________________.
    四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.
    17. 记为数列的前n项和,已知是公差为的等差数列.
    (1)求的通项公式;
    (2)证明:.
    18. 记的内角A,B,C的对边分别为a,b,c,已知.
    (1)若,求B;
    (2)求的最小值.
    19. 如图,直三棱柱的体积为4,的面积为.
    (1)求A到平面的距离;
    (2)设D为的中点,,平面平面,求二面角的正弦值.
    20. 一医疗团队为研究某地的一种地方性疾病与当地居民的卫生习惯(卫生习惯分为良好和不够良好两类)的关系,在已患该疾病的病例中随机调查了100例(称为病例组),同时在未患该疾病的人群中随机调查了100人(称为对照组),得到如下数据:
    (1)能否有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异?
    (2)从该地的人群中任选一人,A表示事件“选到的人卫生习惯不够良好”,B表示事件“选到的人患有该疾病”.与的比值是卫生习惯不够良好对患该疾病风险程度的一项度量指标,记该指标为R.
    (ⅰ)证明:;
    (ⅱ)利用该调查数据,给出的估计值,并利用(ⅰ)的结果给出R的估计值.
    附,
    21. 已知点在双曲线上,直线l交C于P,Q两点,直线的斜率之和为0.
    (1)求l的斜率;
    (2)若,求的面积.
    22. 已知函数和有相同的最小值.
    (1)求a;
    (2)证明:存在直线,其与两条曲线和共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.
    不够良好
    良好
    病例组
    40
    60
    对照组
    10
    90
    0050
    0.010
    0.001
    k
    3.841
    6.635
    10.828
    参考答案
    一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
    1. 若集合,则()
    A. B. C. D.
    【答案】D
    【解析】
    【分析】求出集合后可求.
    详解】,故,
    故选:D
    2. 若,则()
    A. B. C. 1D. 2
    【答案】D
    【解析】
    【分析】利用复数的除法可求,从而可求.
    【详解】由题设有,故,故,
    故选:D
    3. 在中,点D在边AB上,.记,则()
    A. B. C. D.
    【答案】B
    【解析】
    【分析】根据几何条件以及平面向量的线性运算即可解出.
    【详解】因为点D在边AB上,,所以,即,
    所以.
    故选:B.
    4. 南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔时,相应水面的面积为;水位为海拔时,相应水面的面积为,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔上升到时,增加的水量约为()()
    A. B. C. D.
    【答案】C
    【解析】
    【分析】根据题意只要求出棱台的高,即可利用棱台的体积公式求出.
    【详解】依题意可知棱台的高为(m),所以增加的水量即为棱台的体积.
    棱台上底面积,下底面积,


    故选:C.
    5. 从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为()
    A. B. C. D.
    【答案】D
    【解析】
    【分析】由古典概型概率公式结合组合、列举法即可得解.
    【详解】从2至8的7个整数中随机取2个不同的数,共有种不同的取法,
    若两数不互质,不同的取法有:,共7种,
    故所求概率.
    故选:D.
    6. 记函数的最小正周期为T.若,且的图象关于点中心对称,则()
    A. 1B. C. D. 3
    【答案】A
    【解析】
    【分析】由三角函数的图象与性质可求得参数,进而可得函数解析式,代入即可得解.
    【详解】由函数的最小正周期T满足,得,解得,
    又因为函数图象关于点对称,所以,且,
    所以,所以,,
    所以.
    故选:A
    7. 设,则()
    A. B. C. D.
    【答案】C
    【解析】
    【分析】构造函数,导数判断其单调性,由此确定大小.
    【详解】设,因为,
    当时,,当时,
    所以函数在单调递减,在上单调递增,
    所以,所以,故,即,
    所以,所以,故,所以,
    故,
    设,则,
    令,,
    当时,,函数单调递减,
    当时,,函数单调递增,
    又,
    所以当时,,
    所以当时,,函数单调递增,
    所以,即,所以
    故选:C.
    8. 已知正四棱锥的侧棱长为l,其各顶点都在同一球面上.若该球的体积为,且,则该正四棱锥体积的取值范围是()
    A. B. C. D.
    【答案】C
    【解析】
    【分析】设正四棱锥的高为,由球的截面性质列方程求出正四棱锥的底面边长与高的关系,由此确定正四棱锥体积的取值范围.
    【详解】∵球的体积为,所以球的半径,
    设正四棱锥的底面边长为,高为,
    则,,
    所以,
    所以正四棱锥的体积,
    所以,
    当时,,当时,,
    所以当时,正四棱锥的体积取最大值,最大值为,
    又时,,时,,
    所以正四棱锥的体积的最小值为,
    所以该正四棱锥体积的取值范围是.
    故选:C.
    二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.
    9. 已知正方体,则()
    A. 直线与所成的角为B. 直线与所成的角为
    C. 直线与平面所成的角为D. 直线与平面ABCD所成的角为
    【答案】ABD
    【解析】
    【分析】数形结合,依次对所给选项进行判断即可.
    【详解】如图,连接、,因为,所以直线与所成的角即为直线与所成的角,
    因为四边形为正方形,则,故直线与所成的角为,A正确;
    连接,因为平面,平面,则,
    因为,,所以平面,
    又平面,所以,故B正确;
    连接,设,连接,
    因为平面,平面,则,
    因为,,所以平面,
    所以为直线与平面所成的角,
    设正方体棱长为,则,,,
    所以,直线与平面所成的角为,故C错误;
    因为平面,所以为直线与平面所成的角,易得,故D正确.
    故选:ABD
    10. 已知函数,则()
    A. 有两个极值点B. 有三个零点
    C. 点是曲线的对称中心D. 直线是曲线的切线
    【答案】AC
    【解析】
    【分析】利用极值点的定义可判断A,结合的单调性、极值可判断B,利用平移可判断C;利用导数的几何意义判断D.
    【详解】由题,,令得或,
    令得,
    所以在上单调递减,在,上单调递增,
    所以是极值点,故A正确;
    因,,,
    所以,函数在上有一个零点,
    当时,,即函数在上无零点,
    综上所述,函数有一个零点,故B错误;
    令,该函数的定义域为,,
    则是奇函数,是的对称中心,
    将的图象向上移动一个单位得到的图象,
    所以点是曲线的对称中心,故C正确;
    令,可得,又,
    当切点为时,切线方程为,当切点为时,切线方程为,
    故D错误.
    故选:AC
    11. 已知O为坐标原点,点在抛物线上,过点的直线交C于P,Q两点,则()
    A. C的准线为B. 直线AB与C相切
    C. D.
    【答案】BCD
    【解析】
    【分析】求出抛物线方程可判断A,联立AB与抛物线的方程求交点可判断B,利用距离公式及弦长公式可判断C、D.
    【详解】将点的代入抛物线方程得,所以抛物线方程为,故准线方程为,A错误;
    ,所以直线的方程为,
    联立,可得,解得,故B正确;
    设过的直线为,若直线与轴重合,则直线与抛物线只有一个交点,
    所以,直线的斜率存在,设其方程为,,
    联立,得,
    所以,所以或,,
    又,,
    所以,故C正确;
    因为,,
    所以,而,故D正确.
    故选:BCD
    12. 已知函数及其导函数的定义域均为,记,若,均为偶函数,则()
    A. B. C. D.
    【答案】BC
    【解析】
    【分析】转化题设条件为函数的对称性,结合原函数与导函数图象的关系,根据函数的性质逐项判断即可得解.
    【详解】因为,均为偶函数,
    所以即,,
    所以,,则,故C正确;
    函数,的图象分别关于直线对称,
    又,且函数可导,
    所以,
    所以,所以,
    所以,,故B正确,D错误;
    若函数满足题设条件,则函数(C为常数)也满足题设条件,所以无法确定的函数值,故A错误.
    故选:BC.
    三、填空题:本题共4小题,每小题5分,共20分.
    13. 的展开式中的系数为________________(用数字作答).
    【答案】-28
    【解析】
    【分析】可化为,结合二项式展开式的通项公式求解.
    【详解】因为,
    所以的展开式中含的项为,
    的展开式中的系数为-28
    故答案为:-28
    14. 写出与圆和都相切的一条直线的方程________________.
    【答案】或或
    【解析】
    【分析】先判断两圆位置关系,分情况讨论即可.
    【详解】圆的圆心为,半径为,圆的圆心为,半径为,
    两圆圆心距为,等于两圆半径之和,故两圆外切,
    如图,
    当切线为l时,因为,所以,设方程为
    O到l的距离,解得,所以l的方程为,
    当切线为m时,设直线方程为,其中,,
    由题意,解得,
    当切线为n时,易知切线方程为,
    故答案为:或或.
    15. 若曲线有两条过坐标原点的切线,则a的取值范围是________________.
    【答案】
    【解析】
    【分析】设出切点横坐标,利用导数的几何意义求得切线方程,根据切线经过原点得到关于的方程,根据此方程应有两个不同的实数根,求得的取值范围.
    【详解】∵,∴,
    设切点为,则,切线斜率,
    切线方程为:,
    ∵切线过原点,∴,
    整理得:,
    ∵切线有两条,∴,解得或,
    ∴的取值范围是,
    故答案为:
    16. 已知椭圆,C的上顶点为A,两个焦点为,,离心率为.过且垂直于的直线与C交于D,E两点,,则的周长是________________.
    【答案】13
    【解析】
    【分析】利用离心率得到椭圆的方程为,根据离心率得到直线的斜率,进而利用直线的垂直关系得到直线的斜率,写出直线的方程:,代入椭圆方程,整理化简得到:,利用弦长公式求得,得,根据对称性将的周长转化为的周长,利用椭圆的定义得到周长为.
    【详解】∵椭圆的离心率为,∴,∴,∴椭圆的方程为,不妨设左焦点为,右焦点为,如图所示,∵,∴,∴为正三角形,∵过且垂直于的直线与C交于D,E两点,为线段的垂直平分线,∴直线的斜率为,斜率倒数为, 直线的方程:,代入椭圆方程,整理化简得到:,
    判别式,
    ∴,
    ∴ , 得,
    ∵为线段的垂直平分线,根据对称性,,∴的周长等于的周长,利用椭圆的定义得到周长为.
    故答案为:13.
    四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.
    17. 记为数列的前n项和,已知是公差为的等差数列.
    (1)求的通项公式;
    (2)证明:.
    【答案】(1)
    (2)见解析
    【解析】
    【分析】(1)利用等差数列的通项公式求得,得到,利用和与项的关系得到当时,,进而得:,利用累乘法求得,检验对于也成立,得到的通项公式;
    (2)由(1)的结论,利用裂项求和法得到,进而证得.
    【小问1详解】
    ∵,∴,∴,
    又∵是公差为的等差数列,
    ∴,∴,
    ∴当时,,
    ∴,
    整理得:,
    即,


    显然对于也成立,
    ∴的通项公式;
    【小问2详解】

    18. 记的内角A,B,C的对边分别为a,b,c,已知.
    (1)若,求B;
    (2)求的最小值.
    【答案】(1);
    (2).
    【解析】
    【分析】(1)根据二倍角公式以及两角差的余弦公式可将化成,再结合,即可求出;
    (2)由(1)知,,,再利用正弦定理以及二倍角公式将化成,然后利用基本不等式即可解出.
    【小问1详解】
    因为,即,
    而,所以;
    【小问2详解】
    由(1)知,,所以,
    而,
    所以,即有.
    所以

    当且仅当时取等号,所以的最小值为.
    19. 如图,直三棱柱的体积为4,的面积为.
    (1)求A到平面的距离;
    (2)设D为的中点,,平面平面,求二面角的正弦值.
    【答案】(1)
    (2)
    【解析】
    【分析】(1)由等体积法运算即可得解;
    (2)由面面垂直的性质及判定可得平面,建立空间直角坐标系,利用空间向量法即可得解.
    【小问1详解】
    在直三棱柱中,设点A到平面的距离为h,
    则,
    解得,
    所以点A到平面的距离为;
    【小问2详解】
    取的中点E,连接AE,如图,因为,所以,
    又平面平面,平面平面,
    且平面,所以平面,
    在直三棱柱中,平面,
    由平面,平面可得,,
    又平面且相交,所以平面,
    所以两两垂直,以B为原点,建立空间直角坐标系,如图,
    由(1)得,所以,,所以,
    则,所以的中点,
    则,,
    设平面的一个法向量,则,
    可取,
    设平面的一个法向量,则,
    可取,
    则,
    所以二面角的正弦值为.
    20. 一医疗团队为研究某地的一种地方性疾病与当地居民的卫生习惯(卫生习惯分为良好和不够良好两类)的关系,在已患该疾病的病例中随机调查了100例(称为病例组),同时在未患该疾病的人群中随机调查了100人(称为对照组),得到如下数据:
    (1)能否有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异?
    (2)从该地的人群中任选一人,A表示事件“选到的人卫生习惯不够良好”,B表示事件“选到的人患有该疾病”.与的比值是卫生习惯不够良好对患该疾病风险程度的一项度量指标,记该指标为R.
    (ⅰ)证明:;
    (ⅱ)利用该调查数据,给出的估计值,并利用(ⅰ)的结果给出R的估计值.
    附,
    【答案】(1)答案见解析
    (2)(i)证明见解析;(ii);
    【解析】
    【分析】(1)由所给数据结合公式求出的值,将其与临界值比较大小,由此确定是否有99%的把握认为患该疾病群体与未黄该疾病群体的卫生习惯有差异;(2)(i)根据定义结合条件概率公式即可完成证明;(ii)根据(i)结合已知数据求.
    【小问1详解】
    由已知,
    又,,
    所以有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异.
    【小问2详解】
    (i)因为,
    所以
    所以,
    (ii)
    由已知,,
    又,,
    所以
    21. 已知点在双曲线上,直线l交C于P,Q两点,直线的斜率之和为0.
    (1)求l的斜率;
    (2)若,求的面积.
    【答案】(1);
    (2).
    【解析】
    【分析】(1)由点在双曲线上可求出,易知直线l的斜率存在,设,,再根据,即可解出l的斜率;
    (2)根据直线的斜率之和为0可知直线的倾斜角互补,再根据即可求出直线的斜率,再分别联立直线与双曲线方程求出点的坐标,即可得到直线的方程以及的长,由点到直线的距离公式求出点到直线的距离,即可得出的面积.
    【小问1详解】
    因为点在双曲线上,所以,解得,即双曲线
    易知直线l的斜率存在,设,,
    联立可得,,
    所以,,.
    所以由可得,,
    即,
    即,
    所以,
    化简得,,即,
    所以或,
    当时,直线过点,与题意不符,舍去,
    故.
    【小问2详解】
    不妨设直线的倾斜角为,因为,所以,
    因为,所以,即,
    即,解得,
    于是,直线,直线,
    联立可得,,
    因为方程有一个根为,所以,,
    同理可得,,.
    所以,,
    点到直线的距离,
    故的面积为.
    22. 已知函数和有相同最小值.
    (1)求a;
    (2)证明:存在直线,其与两条曲线和共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.
    【答案】(1)
    (2)见解析
    【解析】
    【分析】(1)根据导数可得函数的单调性,从而可得相应的最小值,根据最小值相等可求a.注意分类讨论.
    (2)根据(1)可得当时,的解的个数、的解的个数均为2,构建新函数,利用导数可得该函数只有一个零点且可得的大小关系,根据存在直线与曲线、有三个不同的交点可得的取值,再根据两类方程的根的关系可证明三根成等差数列.
    【小问1详解】
    的定义域为,而,
    若,则,此时无最小值,故.
    的定义域为,而.
    当时,,故在上为减函数,
    当时,,故在上为增函数,
    故.
    当时,,故在上为减函数,
    当时,,故在上为增函数,
    故.
    因为和有相同的最小值,
    故,整理得到,其中,
    设,则,
    故为上的减函数,而,
    故的唯一解为,故的解为.
    综上,.
    【小问2详解】
    由(1)可得和的最小值为.
    当时,考虑的解的个数、的解的个数.
    设,,
    当时,,当时,,
    故在上为减函数,在上为增函数,
    所以,
    而,,
    设,其中,则,
    故在上为增函数,故,
    故,故有两个不同的零点,即的解的个数为2.
    设,,
    当时,,当时,,
    故在上为减函数,在上为增函数,
    所以,
    而,,
    有两个不同的零点即的解的个数为2.
    当,由(1)讨论可得、仅有一个零点,
    当时,由(1)讨论可得、均无零点,
    故若存在直线与曲线、有三个不同的交点,
    则.
    设,其中,故,
    设,,则,
    故在上为增函数,故即,
    所以,所以在上为增函数,
    而,,
    故在上有且只有一个零点,且:
    当时,即即,
    当时,即即,
    因此若存在直线与曲线、有三个不同交点,
    故,
    此时有两个不同的零点,
    此时有两个不同的零点,
    故,,,
    所以即即,
    故为方程的解,同理也为方程的解
    又可化为即即,
    故为方程的解,同理也为方程的解,
    所以,而,
    故即.
    不够良好
    良好
    病例组
    40
    60
    对照组
    10
    90
    0.050
    0.010
    0.001
    k
    3.841
    6.635
    10.828
    相关试卷

    2021年山东高考数学真题及答案: 这是一份2021年山东高考数学真题及答案,共14页。试卷主要包含了已知F1,F2是椭圆C,若tan=-2,则 =等内容,欢迎下载使用。

    2021年湖北高考数学真题及答案: 这是一份2021年湖北高考数学真题及答案,共14页。试卷主要包含了已知F1,F2是椭圆C,若tan=-2,则 =等内容,欢迎下载使用。

    _2023年西藏高考数学真题及答案: 这是一份_2023年西藏高考数学真题及答案,共14页。试卷主要包含了 在复平面内, 对应的点位于, 设集合 , 若 , 则, 若 为偶函数, 则, 已知 为锐角, , 则等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map