- 专题02 三角形压轴题真题分类-2022-2023学年八年级数学上册重难点题型期末复习热点题型(人教版) 试卷 0 次下载
- 专题03 全等三角形的性质与判定选择、填空重难点题型分类-2022-2023学年八年级数学上册重难点题型期末复习热点题型(人教版) 试卷 1 次下载
- 专题04 全等三角形证明题重难点题型分类-2022-2023学年八年级数学上册重难点题型期末复习热点题型(人教版) 试卷 0 次下载
- 专题05 轴对称重难点题型分类-2022-2023学年八年级数学上册重难点题型期末复习热点题型(人教版) 试卷 0 次下载
- 专题06 手拉手模型压轴题真题分类-2022-2023学年八年级数学上册重难点题型期末复习热点题型(人教版) 试卷 1 次下载
专题01 三角形重难点题型分类-2022-2023学年八年级数学上册重难点题型期末复习热点题型(人教版)
展开题型1:三角形的边长问题
1.(2022·四川·成都)已知三角形两边长分别为4和9,则此第三边x的取值范围是( )
A.5<x<13B.4<x<9C.18<x<26D.14<x<22
2.(2021·河南周口)一个三角形的三边长分别为3,5,x,若x为偶数,则这样的三角形有( )个.
A.2B.3C.4D.5
3.(2022·辽宁·沈阳)三角形两边长分别为4和7,若第三边的长为偶数,则这个三角形的周长可能是( )
A.15或12B.15或19C.16或17D.19或23
4.(2022·四川成都)已知,,是的三边长,,满足,且为方程的解,则的周长为( )
A.B.C.或D.
5.已知实数x,y满足|x﹣6|+=0,则以x,y的值为两边的等腰三角形的周长为( )
A.27或36B.27
C.36D.以上答案都不对
6.(2022·辽宁沈阳)已知a,b,c是一个三角形的三边长,化简_________.
7.已知a,b,c分别为三角形的三边长,则化简|a﹣b﹣c|+|b﹣c﹣a|+|c﹣a+b|的结果为( )
A.a+b+cB.﹣a+b﹣3cC.a+2b﹣cD.﹣a+b+3c
题型2:多边形的内角和、对角线
8.(2022·广西·兴安)正多边形的一个内角等于,则该多边形是正( )边形.
A.B.C.D.
9.(2022·浙江·温州)若n边形的内角和等于外角和的4倍,则边数n是( )
A.8B.9C.10D.11
10.(2022·浙江杭州)如果一个多边形的内角和等于外角和的倍,那么这个多边形的边数________.
11.把正三角形、正四边形、正五边形按如图所示的位置摆放,若∠1=52°,∠2=18°,则∠3= .
12.(2020·四川·宜宾)如果一个多边形从一个顶点出发可以做7条对角线,则它的内角和是______.
13.一个正多边形的每个内角都比与它相邻的外角的3倍还多20°,
(1)求此正多边形的边数;(2)它有多少条对角线?
题型3:三角形的三个角平分线模型
三角形的两内角角平分线模型
14.(2022·山东滨州)如图,∠1=∠2,∠3=∠4,∠A=88°,则∠BOC=_____.
15.(2022·山东济南)如图,已知△ABC中,BD,CE分别是△ABC的角平分线,BD与CE交于点O,如果∠A=54°,那么∠BOC的度数是( )
A.97°B.117°C.63°D.153°
16.(2021·江苏·麒麟)如图,BI,CI分别是△ABC的角平分线,∠BIC=130°,则∠A=_______.
17.(2021·福建·莆田)在△ABC中,∠B、∠C的平分线相交于O,∠BOC=125°,则∠A的度数为___.
2、三角形两外角角平分线模型
18.如图,在△ABC中,∠B=40°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC= .
19.(2022·山东烟台)如图,已知,,平分外角,平分外角,平分,平分外角,则_________.
3、三角形一个内角一个外角角平分线模型
20.(2022·河南南阳)已知△ABC中,①如图1,若点P是∠ABC和∠ACB的平分线的交点,则∠P=90°+∠A;②如图2,若点P是∠ABC和外角∠ACE的平分线的交点,则∠P=90°-∠A;③如图3,若点P是外角∠CBF和外角∠BCE的平分线的交点,则∠P=90°-∠A;上述说法正确的是__________________.
21.(2022·山东泰安)如图①、②中,,,,则的度数为( )
A.111B.174C.153D.132
22.(2021·江苏无锡)如图,△为直角三角形,,AD为∠CAB的平分线,与∠ABC的平分线BE交于点E,BG是△ABC的外角平分线,AD与BG相交于点G,则∠ADC与∠GBF的和为( )
A.120°B.135°C.150°D.160°
23.(2022·山东泰安)如图,在△ABC中,设∠A=x°,∠ABC与∠ACD的平分线交于点A,得∠A1;∠A1BC与∠A1CD的平分线相交于点A2,得∠A2;…;∠A2021与∠A2021CD的平分线相交于点A2022,得∠A2022,则∠A2022是( )度.
A.xB.xC.xD.x
题型4:三角形的角度计算
24.(2022·浙江绍兴)如图,,AE平分∠BAC,且与CD相交于点E,若∠C=50°,则∠AEC的度数为___________.
25.(2022·江苏无锡)将一副三角板(含30°、45°的直角三角形)如图摆放,则图中∠1的度数为_______.
26.(2022年江苏)一副三角板如图放置,,,,则_________.
27.(2022·江苏·江阴)把一副常用的三角板如图所示拼在一起,点B在AE上,那么图中∠ABC=_____°.
28.(2022·江苏·江阴)如图,已知△ABC中,于D,AE平分∠BAC,∠B=80°,∠C=40°,则∠DAE=_________度.
29.(2018·山东德州)如图,在△ABC中,∠B=40°,∠C=80°,AD是BC边上的高,AE平分∠BAC,
(1)求∠BAE的度数;(2)求∠DAE的度数.
30.(2021·北京)如图,在内,是边上的高,平分交边于,,,求的度数.
31.(2020·黑龙江)如图,已知∠A=20°,∠B=27°,AC⊥DE,求∠1,∠D的度数.
32.(2021·湖北)如图,在△ABC中,∠A=40°,∠B=76°,CE平分∠ACB,CD⊥AB于点D,DF⊥CE于点F,求∠CDF的度数.
33.如图,AD是△ABC的高,AE、BF是△ABC的角平分线,它们相交于点O,∠BAC=60°,∠C=70°.
(1)求∠CAD的度数.(2)求∠BOA的度数.
题型5:8字模型
34.(2021·黑龙江)如图,,若,则______°.
35.(2022·重庆)如图,已知,则______度.
36.如图,AE是∠BAD的平分线,CE是∠BCD的平分线,且AE与CE相交于点E.若∠D=40°,∠B=30°,则∠E的度数为______.
37.(2022·山西吕梁)如图,已知AB∥CD,AE和CF分别平分∠BAF和∠DCE,若∠AEC=57°,∠AFC=63°,则∠BAF的度数为____________________ .
38.(2020·安徽)如图①,已知线段AB,CD相交于点O,连接AD,CB,我们把形如图①的图形称之为“8字形”.如图②,在图①的条件下,∠DAB和∠BCD的角平分线AP和CP相交于点P,并且与CD,AB分别相交于点M,N,试解答下列问题:
(1)在图①中,请直接写出∠A,∠B,∠C,∠D之间的数量关系;
(2)在图②中,若∠D=40°,∠B=36°,试求∠P的度数;
(3)如果图②中∠D和∠B为任意角时,其他条件不变,试问∠P与∠D,∠B之间存在着怎样的数量关系(直接写出结论即可).
39.(2020·河北·保定)图1,线段AB、CD相交于点O,连接AD、CB,我们把形如图1的图形称之为“8字形”.如图2,在图1的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题:
(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系: ;
(2)图2中,当∠D=50度,∠B=40度时,求∠P的度数.
(3)图2中∠D和∠B为任意角时,其他条件不变,试问∠P与∠D、∠B之间存在着怎样的数量关系.
题型6:燕尾模型
40.(2018·云南·腾冲)已知:点D是△ABC所在平面内一点,连接AD、CD.
(1)如图1,若∠A=28°,∠B=72°,∠C=11°,求∠ADC;
(2)如图2,若存在一点P,使得PB平分∠ABC,同时PD平分∠ADC,探究∠A,∠P,∠C的关系并证明;
(3)如图3,在 (2)的条件下,将点D移至∠ABC的外部,其它条件不变,探究∠A,∠P,∠C的关系并证明.
41.如图(1),由三角形的内角和或外角和可知:∠ABC=∠A+∠C+∠O在图(2)中,直接利用上述的结论探究:
①若AD、CD分别平分∠OAB,∠OCB,且∠O=80°∠B=120°,求∠ADC的度数
②AD、CD分别平分∠OAB,∠OCB,猜想∠O,∠ABC,∠ADC之间的等量关系,并说明理由.
42.(2022·全国)如图(1)所示的图形,像我们常见的学习用品——圆规.我们不妨把这样图形叫做“规形图”,那么在这一个简单的图形中,到底隐藏了哪些数学知识呢?下面就请你发挥你的聪明才智,解决以下问题:
(1)观察“规形图”,试探究∠BDC与∠A、∠B、∠C之间的关系,并说明理由;
(2)请你直接利用以上结论,解决以下三个问题:
①如图(2),把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XY、图(1)XZ恰好经过点B、C,若∠A=50°,则∠ABX+∠ACX =__________°;
②如图(3)DC平分∠ADB,EC平分∠AEB,若∠DAE=50°,∠DBE=130°,求∠DCE的度数;(写出解答过程)
③如图(4),∠ABD,∠ACD的10等分线相交于点G1、G2、G9,若∠BDC=140°,∠BG1C=77°,则∠A的度数=__________°.
题型7:折叠模型
43.(2021·江西)如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=___.
44.如图,将长方形纸片ABCD折叠,使点D与点B重合,点C落在点C'处,折痕为EF,若∠ABE=25°,则∠EFC'的度数为( )
A.122.5°B.130°C.135°D.140°
45.(2022·四川宜宾)如图,将四边形纸片沿折叠,点落在处,若,则的度数是_______.
46.(2021·湖北·咸丰)如图,在三角形纸片ABC中,.将三角形纸片的一角折叠,使点C落在内,如果,那么___________.
47.如图所示,将△ABC沿着DE翻折,若∠1+∠2=80°,则∠B= 度.
专题13 分式方程应用题重难点题型分类-2022-2023学年八年级数学上册重难点题型期末复习热点题型(人教版): 这是一份专题13 分式方程应用题重难点题型分类-2022-2023学年八年级数学上册重难点题型期末复习热点题型(人教版),文件包含专题13分式方程的应用题重难点题型分类原卷版2022-2023学年八年级数学上册重难点题型分类高分必刷题人教版docx、专题13分式方程的应用题重难点题型分类解析版2022-2023学年八年级数学上册重难点题型分类高分必刷题人教版docx等2份试卷配套教学资源,其中试卷共23页, 欢迎下载使用。
专题12 分式与分式方程重难点题型分类-2022-2023学年八年级数学上册重难点题型期末复习热点题型(人教版): 这是一份专题12 分式与分式方程重难点题型分类-2022-2023学年八年级数学上册重难点题型期末复习热点题型(人教版),文件包含专题12分式与分式方程重难点题型分类原卷版2022-2023学年八年级数学上册重难点题型分类高分必刷题人教版docx、专题12分式与分式方程重难点题型分类解析版2022-2023学年八年级数学上册重难点题型分类高分必刷题人教版docx等2份试卷配套教学资源,其中试卷共21页, 欢迎下载使用。
专题10 因式分解重难点题型分类-2022-2023学年八年级数学上册重难点题型期末复习热点题型(人教版): 这是一份专题10 因式分解重难点题型分类-2022-2023学年八年级数学上册重难点题型期末复习热点题型(人教版),文件包含专题10因式分解重难点题型分类原卷版2022-2023学年八年级数学上册重难点题型分类高分必刷题人教版docx、专题10因式分解重难点题型分类解析版2022-2023学年八年级数学上册重难点题型分类高分必刷题人教版docx等2份试卷配套教学资源,其中试卷共16页, 欢迎下载使用。