- 第二十三章 旋转(易错28题5个考点)-2023-2024学年九年级数学上册期末复习《重难点题型》(人教版) 试卷 1 次下载
- 专题4.1 圆中垂径定理综合应用(3大类题型)-2023-2024学年九年级数学上册期末复习《重难点题型》(人教版) 试卷 1 次下载
- 专题4.3 圆中利用转化思想求角度(4大类题型)-2023-2024学年九年级数学上册期末复习《重难点题型》(人教版) 试卷 1 次下载
- 专题4.4 辅助圆定点定长(题型专练)-2023-2024学年九年级数学上册期末复习《重难点题型》(人教版) 试卷 1 次下载
- 专题4.5 线圆最值(隐圆压轴二)(题型专练)-2023-2024学年九年级数学上册期末复习《重难点题型》(人教版) 试卷 1 次下载
专题4.2 圆切线的判定与性质综合(3大类题型)-2023-2024学年九年级数学上册期末复习《重难点题型》(人教版)
展开【题型3 圆切线的判定与性质综合】
【题型1 证圆的切线-有公共点:连半径,证垂直】
1.(2023春•保德县校级期中)如图,△ABC中,AB=AC,以AB为直径作⊙O,与BC交于点D,过D作AC的垂线,垂足为E.求证:DE是⊙O切线.
2.(2022秋•大连期末)如图,在⊙O中,AB是直径,AD是弦,∠ADE=60°,∠C=30°.求证:CD是⊙O的切线.
3.(2022秋•龙川县校级期末)如图,OA是⊙O的半径,∠B=20°,∠AOB=70°.求证:AB是⊙O的切线.
4.(2022秋•利通区期末)如图,在△ABC中,AB=AC,∠BAC=120°,点D在BC边上,⊙D经过点A和点B且与BC边相交于点E,求证:AC是⊙D的切线.
5.(2022秋•天河区校级期末)如图,AB是⊙O的直径,AC的中点D在⊙O上,DE⊥BC于E.求证:DE是⊙O的切线.
6.(2022秋•阿瓦提县校级期末)已知:AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使AB=AC,连结AC,过点D作DE⊥AC,垂足为E.求证:DE为⊙O的切线.
7.(2022•昭平县一模)如图,AB是⊙O的弦,OP⊥AB交⊙O于C,OC=2,∠ABC=30°.
(1)求AB的长;
(2)若C是OP的中点,求证:PB是⊙O的切线.
8.(2022•漳州模拟)已知:△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作DE⊥AC于点E.求证:DE是⊙O的切线.
9.(2022秋•芜湖期末)如图,AB为⊙O的直径,点C,D在⊙O上,==,DE⊥AC.
求证:DE是⊙O的切线.
【题型2 证圆的切线- 没有公共点:作垂直,证半径】
10.(2022秋•长乐区期中)如图,在△OAB中,OA=OB=5,AB=8,⊙O的半径为3.
求证:AB是⊙O的切线.
11.(2022•八步区一模)如图,在Rt△ABC中,∠BAC的角平分线交BC于点D,E为AB上一点,DE=DC,以D为圆心,DB的长为半径作⊙D,AB=5,BE=3.
(1)求证:AC是⊙D的切线;
(2)求线段AC的长.
12.(秋•莆田期末)如图,半圆O的直径是AB,AD、BC是两条切线,切点分别为A、B,CO平分∠BCD.
(1)求证:CD是半圆O的切线.
(2)若AD=20,CD=50,求BC和AB的长.
【题型3 圆切线的判定与形式综合】
13.(2022秋•清原县期末)如图,在△ABC中,∠ACB=90°,点D是AB边的中点,点O在AC边上,⊙O经过点C且与AB边相切于点E,.
(1)求证:AF是⊙O的切线;
(2)若BC=6,AB=10,求⊙O的半径长.
14.(2023春•江岸区校级月考)如图,AB为⊙O的直径,过圆上一点D作⊙O的切线CD交BA的延长线于点C,过点O作OE∥AD,OE交CD于点E,连接BE.
(1)求证:直线BE与⊙O相切;
(2)若CA=2,CD=4,求DE的长.
15.(2023•甘南县一模)如图,已知AB是⊙O的直径,点C在⊙O上,AD⊥DC于点D,AC平分∠DAB.
(1)求证:直线CD是⊙O的切线;
(2)若AB=4,∠DAB=60°,求AD的长.
16.(2023•云梦县校级三模)如图,在Rt△ABC中,∠C=90°,在AC上取一点D,以AD为直径作⊙O,与AB相交于点E,作线段BE的垂直平分线MN交BC于点N,连接EN.
(1)求证:EN是⊙O的切线;
(2)若AC=3,BC=4,⊙O的半径为1,求线段EN的长.
17.(2022秋•和平区校级期末)如图,点C在以AB为直径的⊙O上,AC平分∠BAD,且AD⊥CD于点D.
(1)求证:DC是⊙O的切线;
(2)若AD=4,CD=2,求⊙O的半径.
18.(2021秋•利川市期末)如图,已知等腰三角形ABC的底角为30°,以BC为直径的⊙O与底边AB交于点D,过D作DE⊥AC,垂足为E.
(1)证明:DE为⊙O的切线;
(2)若BC=4,求DE的长.
19.(2022秋•广陵区校级期末)如图,在Rt△ABC中,∠C=90°,点D在AB上,以AD为直径的⊙O与BC相交于点E,与AC相交于点F,AE平分∠BAC.
(1)求证:BC是⊙O的切线;
(2)若∠EAB=30°,OD=5,求图中阴影部分的周长.
20.(2022秋•龙岩期中)如图,AB是⊙O的直径,AC与⊙O交于点C,∠BAC的平分线交⊙O于点D,DE⊥AC,垂足为E.
(1)求证:DE是⊙O的切线;
(2)若直径AB=10,弦AC=6,求DE的长.
21.(2022•沭阳县校级模拟)如图,AB是⊙O的直径,BD平分∠ABC,DE⊥BC,垂足为E.
(1)求证:DE是⊙O的切线;
(2)若CE=2,DE=4,求⊙O的半径.
22.(2022秋•陵城区期末)如图,四边形ABCD中,∠B=∠C=90°,点E是边BC上一点,且DE平分∠AEC,作△ABE的外接圆⊙O.
(1)求证:DC是⊙O的切线;
(2)若⊙O的半径为5,CD=3,求DE的长.
23.(2022秋•河西区校级期末)如图,在⊙O中,PA是直径,PC是弦,PH平分∠APB且与⊙O交于点H,过H作HB⊥PC交PC的延长线于点B.
(1)求证:HB是⊙O的切线;
(2)若HB=4,BC=2,求⊙O的半径.
24.(2021秋•甘井子区期末)如图,△ABC中,AB=AC,以AB为直径的⊙O与AC,BC分别交于点D和点E,过点E作EF⊥AC,垂足为F.
(1)求证:EF是⊙O的切线;
(2)若CD=4,EF=3,求⊙O半径.
25.(2022秋•苍溪县期末)如图,AB是⊙O的直径,F为⊙O上一点,AC平分∠FAB交⊙O于点C.过点C作CD⊥AF交AF的延长线于点D.
(1)求证:CD是⊙O的切线.
(2)若DC=3,AD=9,求⊙O半径.
26.(2022•顺城区模拟)如图,△ABC是⊙O的内接三角形,AB是⊙O的直径,点D在⊙O上,且∠ABC=2∠BAD,过点D作BC的垂线与BC的延长线交于点E.
(1)求证:DE是⊙O的切线;
(2)若DE=3,BE=1,求⊙O的半径.
专题4.8 四点共圆(隐圆压轴五)(题型专练)-2023-2024学年九年级数学上册期末复习《重难点题型》(人教版): 这是一份专题4.8 四点共圆(隐圆压轴五)(题型专练)-2023-2024学年九年级数学上册期末复习《重难点题型》(人教版),文件包含专题48四点共圆隐圆压轴五题型专练原卷版docx、专题48四点共圆隐圆压轴五题型专练解析版docx等2份试卷配套教学资源,其中试卷共24页, 欢迎下载使用。
专题4.6 阿氏圆(隐圆压轴三)(题型专练)-2023-2024学年九年级数学上册期末复习《重难点题型》(人教版): 这是一份专题4.6 阿氏圆(隐圆压轴三)(题型专练)-2023-2024学年九年级数学上册期末复习《重难点题型》(人教版),文件包含专题46阿氏圆隐圆压轴三题型专练原卷版docx、专题46阿氏圆隐圆压轴三题型专练解析版docx等2份试卷配套教学资源,其中试卷共34页, 欢迎下载使用。
专题4.5 线圆最值(隐圆压轴二)(题型专练)-2023-2024学年九年级数学上册期末复习《重难点题型》(人教版): 这是一份专题4.5 线圆最值(隐圆压轴二)(题型专练)-2023-2024学年九年级数学上册期末复习《重难点题型》(人教版),文件包含专题45线圆最值隐圆压轴二题型专练原卷版docx、专题45线圆最值隐圆压轴二题型专练解析版docx等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。