第2章 对称图形——圆(填空题中考经典常考题)-江苏省2023-2024学年上学期九年级数学单元培优专题练习(苏科版)
展开
这是一份第2章 对称图形——圆(填空题中考经典常考题)-江苏省2023-2024学年上学期九年级数学单元培优专题练习(苏科版),共21页。
二.圆周角定理(共3小题)
2.(2022•苏州)如图,AB是⊙O的直径,弦CD交AB于点E,连接AC,AD.若∠BAC=28°,则∠D= °.
3.(2022•徐州)如图,A、B、C点在圆O上,若∠ACB=36°,则∠AOB= .
4.(2021•宿迁)如图,在Rt△ABC中,∠ABC=90°,∠A=32°,点B、C在⊙O上,边AB、AC分别交⊙O于D、E两点,点B是的中点,则∠ABE= .
三.圆内接四边形的性质(共3小题)
5.(2023•淮安)如图,四边形ABCD是⊙O的内接四边形,BC是⊙O的直径,BC=2CD,则∠BAD的度数是 °.
6.(2022•南京)如图,四边形ABCD内接于⊙O,它的3个外角∠EAB,∠FBC,∠GCD的度数之比为1:2:4,则∠D= °.
7.(2021•盐城)如图,在⊙O内接四边形ABCD中,若∠ABC=100°,则∠ADC= °.
四.三角形的外接圆与外心(共1小题)
8.(2022•常州)如图,△ABC是⊙O的内接三角形.若∠ABC=45°,AC=,则⊙O的半径是 .
五.切线的性质(共3小题)
9.(2023•徐州)如图,在⊙O中,直径AB与弦CD交于点E.=2,连接AD,过点B的切线与AD的延长线交于点F.若∠AFB=68°,则∠DEB= °.
10.(2022•泰州)如图,PA与⊙O相切于点A,PO与⊙O相交于点B,点C在上,且与点A、B不重合.若∠P=26°,则∠C的度数为 °.
11.(2022•盐城)如图,AB、AC是⊙O的弦,过点A的切线交CB的延长线于点D,若∠BAD=35°,则∠C= °.
六.三角形的内切圆与内心(共1小题)
12.(2023•镇江)《九章算术》中记载:“今有勾八步,股一十五步.问勾中容圆径几何?”译文:今有一个直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形内切圆的直径是多少?书中给出的算法译文如下:如图,根据勾、股,求得弦长.用勾、股、弦相加作为除数,用勾乘以股,再乘以2作为被除数,商即为该直角三角形内切圆的直径,求得该直径等于 步(注:“步”为长度单位).
七.正多边形和圆(共2小题)
13.(2023•连云港)以正六边形ABCDEF的顶点C为旋转中心,按顺时针方向旋转,使得新正六边形A′B′CD′E′F′的顶点D′落在直线BC上,则正六边形ABCDEF至少旋转 °.
14.(2022•宿迁)如图,在正六边形ABCDEF中,AB=6,点M在边AF上,且AM=2.若经过点M的直线l将正六边形面积平分,则直线l被正六边形所截的线段长是 .
八.弧长的计算(共1小题)
15.(2023•镇江)如图,扇形OAB的半径为1,分别以点A、B为圆心,大于AB的长为半径画弧,两弧相交于点P,∠BOP=35°,则的长l= (结果保留π).
九.圆锥的计算(共7小题)
16.(2023•宿迁)若圆锥的底面半径为2cm,侧面展开图是一个圆心角为120°的扇形,则这个圆锥的母线长是 cm.
17.(2023•徐州)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形.若母线长l为6cm,扇形的圆心角θ为120°,则圆锥的底面圆的半径r为 cm.
18.(2023•苏州)如图,在▱ABCD中,AB=+1,BC=2,AH⊥CD,垂足为H,AH=.以点A为圆心,AH长为半径画弧,与AB,AC,AD分别交于点E,F,G.若用扇形AEF围成一个圆锥的侧面,记这个圆锥底面圆的半径为r1;用扇形AHG围成另一个圆锥的侧面,记这个圆锥底面圆的半径为r2,则r1﹣r2= .(结果保留根号)
19.(2022•徐州)如图,若圆锥的母线长为6,底面半径为2,则其侧面展开图的圆心角为 .
20.(2022•宿迁)用半径为6cm,圆心角为120°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆的半径是 cm.
21.(2022•淮安)若圆锥的底面圆半径为2,母线长为5,则该圆锥的侧面积是 .(结果保留π)
22.(2021•南通)圆锥的母线长为2cm,底面圆的半径长为1cm,则该圆锥的侧面积为 cm2.
第2章 对称图形——圆(填空题中考经典常考题)-江苏省2023-2024学年上学期九年级数学单元培优专题练习(苏科版)
参考答案与试题解析
一.圆心角、弧、弦的关系(共1小题)
1.(2021•南京)如图,AB是⊙O的弦,C是的中点,OC交AB于点D.若AB=8cm,CD=2cm,则⊙O的半径为 5 cm.
【答案】5.
【解答】解:如图,连接OA,
∵C是的中点,
∴D是弦AB的中点,
∴OC⊥AB,AD=BD=4,
∵OA=OC,CD=2,
∴OD=OC﹣CD=OA﹣CD,
在Rt△OAD中,
OA2=AD2+OD2,即OA2=16+(OA﹣2)2,
解得OA=5,
故答案为:5.
二.圆周角定理(共3小题)
2.(2022•苏州)如图,AB是⊙O的直径,弦CD交AB于点E,连接AC,AD.若∠BAC=28°,则∠D= 62 °.
【答案】见试题解答内容
【解答】解:如图,连接BC.
∵AB是直径,
∴∠ACB=90°,
∴∠ABC=90°﹣∠CAB=62°,
∴∠D=∠ABC=62°,
故答案为:62.
3.(2022•徐州)如图,A、B、C点在圆O上,若∠ACB=36°,则∠AOB= 72° .
【答案】72°.
【解答】解:∵∠ACB=∠AOB,∠ACB=36°,
∴∠AOB=2×∠ACB=72°.
故答案为:72°.
4.(2021•宿迁)如图,在Rt△ABC中,∠ABC=90°,∠A=32°,点B、C在⊙O上,边AB、AC分别交⊙O于D、E两点,点B是的中点,则∠ABE= 13° .
【答案】13°.
【解答】解:如图,连接DC,
∵∠DBC=90°,
∴DC是⊙O的直径,
∵点B是的中点,
∴∠BCD=∠BDC=45°,
在Rt△ABC中,∠ABC=90°,∠A=32°,
∴∠ACB=90°﹣32°=58°,
∴∠ACD=∠ACB﹣∠BCD=58°﹣45°=13°=∠ABE,
故答案为:13°.
三.圆内接四边形的性质(共3小题)
5.(2023•淮安)如图,四边形ABCD是⊙O的内接四边形,BC是⊙O的直径,BC=2CD,则∠BAD的度数是 120 °.
【答案】120.
【解答】解:如图,连接OD,
∵BC是⊙O的直径,BC=2CD,
∴OC=OD=CD,
∴△COD为等边三角形,
∴∠C=60°,
∵四边形ABCD是⊙O的内接四边形,
∴∠BAD+∠C=180°,
∴∠BAD=120°,
故答案为:120.
6.(2022•南京)如图,四边形ABCD内接于⊙O,它的3个外角∠EAB,∠FBC,∠GCD的度数之比为1:2:4,则∠D= 72 °.
【答案】72.
【解答】解:如图,延长ED到H,
∵四边形ABCD内接于⊙O,
∴∠ABC+∠ADC=∠BAD+∠BCD=180°,
又∵∠EAB,∠FBC,∠GCD的度数之比为1:2:4,
∴∠EAB,∠FBC,∠GCD,∠CDH的度数之比为1:2:4:3,
∵∠EAB+∠FBC+∠GCD+∠CDH=360°,
∴∠CDH=360°×=108°,
∴∠ADC=180°﹣108°=72°,
故答案为:72.
7.(2021•盐城)如图,在⊙O内接四边形ABCD中,若∠ABC=100°,则∠ADC= 80 °.
【答案】见试题解答内容
【解答】解:∵四边形ABCD是⊙O的内接四边形,
∴∠ABC+∠ADC=180°,
∴∠ADC=180°﹣100°=80°.
故答案为:80.
四.三角形的外接圆与外心(共1小题)
8.(2022•常州)如图,△ABC是⊙O的内接三角形.若∠ABC=45°,AC=,则⊙O的半径是 1 .
【答案】见试题解答内容
【解答】解:连接AO并延长交⊙O于点D,连接CD,
∵AD是⊙O的直径,
∴∠ACD=90°,
∵∠ABC=45°,
∴∠ADC=∠ABC=45°,
∴AD===2,
∴⊙O的半径是1,
故答案为:1.
五.切线的性质(共3小题)
9.(2023•徐州)如图,在⊙O中,直径AB与弦CD交于点E.=2,连接AD,过点B的切线与AD的延长线交于点F.若∠AFB=68°,则∠DEB= 66 °.
【答案】66.
【解答】解:如图,连接OC,OD,
∵BF是⊙O的切线,AB是⊙O的直径,
∴OB⊥BF,
∴∠ABF=90°,
∵∠AFB=68°,
∴∠BAF=90°﹣∠AFB=22°,
∴∠BOD=2∠BAF=44°,
∵,
∴∠COA=2∠BOD=88°,
∴∠CDA=,
∵∠DEB是△AED的一个外角,
∴∠DEB=∠BAF+∠CDA=66°,
故答案为:66.
10.(2022•泰州)如图,PA与⊙O相切于点A,PO与⊙O相交于点B,点C在上,且与点A、B不重合.若∠P=26°,则∠C的度数为 32 °.
【答案】32.
【解答】解:如图,连接AO并延长交⊙O于点D,连接DB,
∵PA与⊙O相切于点A,
∴∠OAP=90°,
∵∠P=26°,
∴∠AOP=90°﹣∠P=90°﹣26°=64°,
∴∠D=∠AOP=×64°=32°,
∵点C在上,且与点A、B不重合,
∴∠C=∠D=32°,
故答案为:32.
11.(2022•盐城)如图,AB、AC是⊙O的弦,过点A的切线交CB的延长线于点D,若∠BAD=35°,则∠C= 35 °.
【答案】35.
【解答】解:连接OA并延长交⊙O于点E,连接BE,
∵AD与⊙O相切于点A,
∴∠OAD=90°,
∵∠BAD=35°,
∴∠BAE=∠OAD﹣∠BAD=55°,
∵AE是⊙O的直径,
∴∠ABE=90°,
∴∠E=90°﹣∠BAE=35°,
∴∠C=∠E=35°,
故答案为:35.
六.三角形的内切圆与内心(共1小题)
12.(2023•镇江)《九章算术》中记载:“今有勾八步,股一十五步.问勾中容圆径几何?”译文:今有一个直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形内切圆的直径是多少?书中给出的算法译文如下:如图,根据勾、股,求得弦长.用勾、股、弦相加作为除数,用勾乘以股,再乘以2作为被除数,商即为该直角三角形内切圆的直径,求得该直径等于 6 步(注:“步”为长度单位).
【答案】6.
【解答】解:根据勾股定理得:斜边为=17,
则该直角三角形能容纳的圆形(内切圆)半径r==3(步),即直径为6步,
故答案为:6.
七.正多边形和圆(共2小题)
13.(2023•连云港)以正六边形ABCDEF的顶点C为旋转中心,按顺时针方向旋转,使得新正六边形A′B′CD′E′F′的顶点D′落在直线BC上,则正六边形ABCDEF至少旋转 60 °.
【答案】60°.
【解答】解:∵多边形ABCDEF是正六边形,
∴∠BCD=120°,
要使新正六边形A′B′CD′E′F′的顶点D′落在直线BC上,
则∠DCD'至少为60°,则正六边形ABCDEF至少旋转60°.
故答案为:60°.
14.(2022•宿迁)如图,在正六边形ABCDEF中,AB=6,点M在边AF上,且AM=2.若经过点M的直线l将正六边形面积平分,则直线l被正六边形所截的线段长是 4 .
【答案】4.
【解答】解:如图,设正六边形ABCDEF的中心为O,过点M、O作直线l交CD于点N,则直线l将正六边形的面积平分,直线l被正六边形所截的线段长是MN,连接OF,过点M作MH⊥OF于点H,连接OA,
∵六边形ABCDEF是正六边形,AB=6,中心为O,
∴AF=AB=6,∠AFO=∠AFE=×=60°,MO=ON,
∵OA=OF,
∴△OAF是等边三角形,
∴OA=OF=AF=6,
∵AM=2,
∴MF=AF﹣AM=6﹣2=4,
∵MH⊥OF,
∴∠FMH=90°﹣60°=30°,
∴FH=MF=×4=2,MH===2,
∴OH=OF﹣FH=6﹣2=4,
∴OM===2,
∴NO=OM=2,
∴MN=NO+OM=2+2=4,
解法二:利用对称性,DN=AM=2,由M向下作垂线,利用勾股定理求解,可得结论.
故答案为:4.
八.弧长的计算(共1小题)
15.(2023•镇江)如图,扇形OAB的半径为1,分别以点A、B为圆心,大于AB的长为半径画弧,两弧相交于点P,∠BOP=35°,则的长l= π (结果保留π).
【答案】π.
【解答】解:由作图知:OP垂直平分AB,
∵OA=OB,
∴∠AOB=2∠BOP=2×35°=70°,
∵扇形的半径是1,
∴的长==π.
故答案为:π.
九.圆锥的计算(共7小题)
16.(2023•宿迁)若圆锥的底面半径为2cm,侧面展开图是一个圆心角为120°的扇形,则这个圆锥的母线长是 6 cm.
【答案】见试题解答内容
【解答】解:设圆锥的母线长为x cm,
根据题意得=2π•2,
解得x=6,
即圆锥的母线长为6cm.
故答案为6.
17.(2023•徐州)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形.若母线长l为6cm,扇形的圆心角θ为120°,则圆锥的底面圆的半径r为 2 cm.
【答案】2.
【解答】解:由题意得:母线l=6,θ=120°,
2πr=,
∴r=2(cm).
故答案为:2.
18.(2023•苏州)如图,在▱ABCD中,AB=+1,BC=2,AH⊥CD,垂足为H,AH=.以点A为圆心,AH长为半径画弧,与AB,AC,AD分别交于点E,F,G.若用扇形AEF围成一个圆锥的侧面,记这个圆锥底面圆的半径为r1;用扇形AHG围成另一个圆锥的侧面,记这个圆锥底面圆的半径为r2,则r1﹣r2= .(结果保留根号)
【答案】.
【解答】解:在▱ABCD中,AB=+1,BC=2,
∴AD=BC=2,CD=AB=+1,AB∥CD.
∵AH⊥CD,垂足为H,AH=,
∴sinD==,
∴∠D=60°,
∴∠DAH=90°﹣∠D=30°,
∴DH=AD=1,
∴CH=CD﹣DH=+1﹣1=,
∴CH=AH,
∵AH⊥CD,
∴△ACH是等腰直角三角形,
∴∠ACH=∠CAH=45°,
∵AB∥CD,
∴∠BAC=∠ACH=45°,
∴=2πr1,解得r1=,
=2πr2,解得r2=,
∴r1﹣r2=﹣=.
故答案为:.
19.(2022•徐州)如图,若圆锥的母线长为6,底面半径为2,则其侧面展开图的圆心角为 120° .
【答案】120°.
【解答】解:设圆锥的侧面展开图的圆心角为n°,
根据题意得2π×2=,
解得n=120,
所以侧面展开图的圆心角为120°.
故答案为:120°.
20.(2022•宿迁)用半径为6cm,圆心角为120°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆的半径是 2 cm.
【答案】2.
【解答】解:设这个圆锥的底面圆的半径为r cm,
由题意得:2πr=,
解得:r=2,
∴这个圆锥的底面圆的半径为2cm,
故答案为:2.
21.(2022•淮安)若圆锥的底面圆半径为2,母线长为5,则该圆锥的侧面积是 10π .(结果保留π)
【答案】10π.
【解答】解:根据圆锥的侧面积公式:πrl=π×2×5=10π,
故答案为:10π.
22.(2021•南通)圆锥的母线长为2cm,底面圆的半径长为1cm,则该圆锥的侧面积为 2π cm2.
【答案】见试题解答内容
【解答】解:圆锥的侧面积为:πrl=2×1π=2πcm2,
故答案为:2π.
声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2024/1/15 17:26:06;用户:wangxiadan128;邮箱:wangxiadan128@163.cm;学号:13052603
相关试卷
这是一份第5章 二次函数(填空题中考经典常考题)-江苏省2023-2024学年下学期九年级数学单元培优专题练习(苏科版),共13页。
这是一份第2章 对称图形——圆(选择题中考经典常考题)-江苏省2023-2024学年上学期九年级数学单元培优专题练习(苏科版),共22页。
这是一份第2章 对称图形——圆(解答题中考经典常考题)-江苏省2023-2024学年上学期九年级数学单元培优专题练习(苏科版),共23页。试卷主要包含了证明等内容,欢迎下载使用。