- 专题3.4 确定圆的条件(知识解读)-2023-2024学年九年级数学下册重点专题解读+训练(北师大版) 试卷 0 次下载
- 专题3.5 直线与圆的位置关系(专项训练)-2023-2024学年九年级数学下册重点专题解读+训练(北师大版) 试卷 0 次下载
- 专题3.5 确定圆的条件(能力提升)-2023-2024学年九年级数学下册重点专题解读+训练(北师大版) 试卷 0 次下载
- 专题3.6 切线长定理(专项训练)-2023-2024学年九年级数学下册重点专题解读+训练(北师大版) 试卷 1 次下载
- 专题3.6 切线长定理(知识解读)-2023-2024学年九年级数学下册重点专题解读+训练(北师大版) 试卷 0 次下载
初中数学北师大版九年级下册5 确定圆的条件精品综合训练题
展开【学习目标】
了解直线与圆的三种位置关系;
了解圆的切线的概念;
掌握直线与圆位置关系的性质;
4.掌握切线长定理,并能初步运用。
5.灵活应用切线长定理解决问题。
【知识点梳理】
考点1 直线与圆的位置关系
1、直线与圆相离 无交点;
2、直线与圆相切 有一个交点;
3、直线与圆相交 有两个交点;
考点2 切线的性质与判定定理
1、切线的判定定理:过半径外端且垂直于半径的直线是切线;
两个条件:过半径外端且垂直半径,二者缺一不可
即:∵且过半径外端
∴是⊙的切线
2、性质定理:切线垂直于过切点的半径(如上图)
推论1:过圆心垂直于切线的直线必过切点。
推论2:过切点垂直于切线的直线必过圆心。
以上三个定理及推论也称二推一定理:
即:①过圆心;②过切点;③垂直切线,三个条件中知道其中两个条件就能推出最后一个。
考点3 三角形的内切圆和内心
1、三角形的内切圆
与三角形的各边都相切的圆叫做三角形的内切圆。
2、三角形的内心
三角形的内切圆的圆心是三角形的三条内角平分线的交点,它叫做三角形的内心。
注意:内切圆及有关计算。
(1)三角形内切圆的圆心是三个内角平分线的交点,它到三边的距离相等。
(2)△ABC中,∠C=90°,AC=b,BC=a,AB=c,则内切圆的半径r= 。
B
O
A D
(3)S△ABC=,其中a,b,c是边长,r是内切圆的半径。
(4)弦切角:角的顶点在圆周上,角的一边是圆的切线,另一边是圆的弦。
如图,BC切⊙O于点B,AB为弦,∠ABC叫弦切角,∠ABC=∠D。 C
【典例分析】
【考点1 直线与圆的位置关系】
【例1】(2022•东明县一模)已知平面内有⊙O和点A,B,若⊙O的半径为2cm,线段OA=3cm,OB=2cm,则直线AB与⊙O的位置关系为( )
A.相交B.相切C.相交或相切D.相离
【变式1-1】(2021秋•泗阳县期末)已知⊙O的半径为3,点P是直线l上的一点,OP=3,则直线l与⊙O的位置关系是( )
A.相离B.相切C.相交D.相切或相交
【变式1-2】(2021秋•海淀区期末)在△ABC中,CA=CB,点O为AB中点.以点C为圆心,CO长为半径作⊙C,则⊙C与AB的位置关系是( )
A.相交B.相切C.相离D.不确定
【典例2】(2021秋•平罗县期末)在平面直角坐标系中,以点(﹣2,3)为圆心,半径为3的圆一定( )
A.与x轴相切,与y轴相切B.与x轴相切,与y轴相交
C.与x轴相交,与y轴相切D.与x轴相交,与y轴相交
【变式2-1】(2022•越秀区校级模拟)平面直角坐标系中,⊙P的圆心坐标为(﹣4,﹣5),半径为5,那么⊙P与y轴的位置关系是( )
A.相交B.相离C.相切D.以上都不是
【变式2-2】(2021秋•惠州期末)已知⊙O的半径为6cm,点O到直线l的距离为5cm,则直线l与⊙O( )
A.相交B.相离C.相切D.相切或相交
【考点2切线的性质】
【典例3】(2022•泰安一模)如图,AB是⊙O的直径,D为⊙O上一点,过上一点T作⊙O的切线TC,且TC⊥AD于点C.若∠DAB=58°,求∠ATC的度数是( )
A.51°B.58°C.61°D.58°
【变式3-1】(2022春•东台市期中)如图,点A是⊙O上一点,AB切⊙O于点A,连接OB交⊙O于点C,若∠B=36°,则∠ACO的度数为( )
A.63°B.54°C.60°D.126°
【变式3-2】(2022•农安县校级模拟)如图,▱ABCD中,以边BC为直径的⊙O与边AD相切于点A,则∠B的大小为( )
A.60°B.55°C.45°D.30°
【变式3-3】(2022春•渝中区校级月考)如图,在⊙O中,AB与⊙O相切于点A,连接OB交⊙O于点C,过点A作AD∥OB交⊙O于点D,连接CD.若∠B=40°,则∠OCD为( )
A.20°B.25°C.30°D.40°
【考点4 切线判定定理】
【典例4】(2021秋•武夷山市期末)如图,点P是⊙O的直径AB延长线上的一点(PB<OB),点E是线段OP的中点.在直径AB上方的圆上作一点C,使得EC=EP.
求证:PC是⊙O的切线.
【变式4-1】(2021秋•长乐区期末)如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D.求证:直线BC是⊙O的切线.
【变式-2】(2021秋•合肥期末)已知,如图:AB是⊙O的直径,AB=AC,BC交⊙O于D,DE⊥AC于点E,求证:DE是⊙O的切线.
【变式4-3】(2021秋•天津期末)如图,已知AB是⊙O的直径,AC是弦,∠BAC的角平分线交⊙O于点D,DE⊥AC
于E.
(1)求证:DE是⊙O的切线;
(2)若AB=10,AC=6,求ED的长.
【考点4 三角形的内切圆与内心】
【典例5】(2022•石家庄模拟)如图,已知△ABC的周长是20,点O为三角形内心,连接OB、OC,OD⊥BC于点D,且OD=3,则△ABC的面积是( )
A.20B.25C.30D.35
【变式5-1】(2021秋•雄县期末)如图,△ABC中,内切圆Ⅰ和边BC、AC、AB分别相切于点D、E、F,若∠B=55°,∠C=75°,则∠EDF的度数是( )
A.55°B.60°C.65°D.70°
【变式5-2】(2021秋•南开区期末)图,在Rt△ABC中,∠ACB=90°,⊙O是△ABC的内切圆,三个切点分别为D、E、F,若BF=2,AF=3,则△ABC的面积是 .
【变式5-3】(2021秋•肇源县期末)如图,△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,且AD=2,△ABC的周长为14,则BC的长为 .
专题3.5 直线与圆的位置关系(知识解读)
【直击考点】
【学习目标】
了解直线与圆的三种位置关系;
了解圆的切线的概念;
掌握直线与圆位置关系的性质;
4.掌握切线长定理,并能初步运用。
5.灵活应用切线长定理解决问题。
【知识点梳理】
考点1 直线与圆的位置关系
1、直线与圆相离 无交点;
2、直线与圆相切 有一个交点;
3、直线与圆相交 有两个交点;
考点2 切线的性质与判定定理
1、切线的判定定理:过半径外端且垂直于半径的直线是切线;
两个条件:过半径外端且垂直半径,二者缺一不可
即:∵且过半径外端
∴是⊙的切线
2、性质定理:切线垂直于过切点的半径(如上图)
推论1:过圆心垂直于切线的直线必过切点。
推论2:过切点垂直于切线的直线必过圆心。
以上三个定理及推论也称二推一定理:
即:①过圆心;②过切点;③垂直切线,三个条件中知道其中两个条件就能推出最后一个。
考点3 三角形的内切圆和内心
1、三角形的内切圆
与三角形的各边都相切的圆叫做三角形的内切圆。
2、三角形的内心
三角形的内切圆的圆心是三角形的三条内角平分线的交点,它叫做三角形的内心。
注意:内切圆及有关计算。
(1)三角形内切圆的圆心是三个内角平分线的交点,它到三边的距离相等。
(2)△ABC中,∠C=90°,AC=b,BC=a,AB=c,则内切圆的半径r= 。
B
O
A D
(3)S△ABC=,其中a,b,c是边长,r是内切圆的半径。
(4)弦切角:角的顶点在圆周上,角的一边是圆的切线,另一边是圆的弦。
如图,BC切⊙O于点B,AB为弦,∠ABC叫弦切角,∠ABC=∠D。 C
【典例分析】
【考点1 直线与圆的位置关系】
【例1】(2022•东明县一模)已知平面内有⊙O和点A,B,若⊙O的半径为2cm,线段OA=3cm,OB=2cm,则直线AB与⊙O的位置关系为( )
A.相交B.相切C.相交或相切D.相离
【答案】C
【解答】解:⊙O的半径为2cm,线段OA=3cm,OB=2cm,
即点A到圆心O的距离大于圆的半径,点B到圆心O的距离等于圆的半径,
∴点A在⊙O外,点B在⊙O上,
∴直线AB与⊙O的位置关系为相交或相切,
故选:C.
【变式1-1】(2021秋•泗阳县期末)已知⊙O的半径为3,点P是直线l上的一点,OP=3,则直线l与⊙O的位置关系是( )
A.相离B.相切C.相交D.相切或相交
【答案】D
【解答】解:分为两种情况:①如图1,当OP⊥直线l时,此时直线l与⊙O的位置关系是相切;
②如图2,当OP和直线l不垂直时,此时直线l与⊙O相交;
所以直线l与⊙O的位置关系是相切或相交,
故选:D.
【变式1-2】(2021秋•海淀区期末)在△ABC中,CA=CB,点O为AB中点.以点C为圆心,CO长为半径作⊙C,则⊙C与AB的位置关系是( )
A.相交B.相切C.相离D.不确定
【答案】B
【解答】解:连接CO,
∵CA=CB,点O为AB中点,
∴OC⊥AB,
∵以点C为圆心,CO长为半径作⊙C,
∴点C到AB的距离等于⊙C的半径,
∴⊙C与AB的位置关系是相切,
故选:B.
【典例2】(2021秋•平罗县期末)在平面直角坐标系中,以点(﹣2,3)为圆心,半径为3的圆一定( )
A.与x轴相切,与y轴相切B.与x轴相切,与y轴相交
C.与x轴相交,与y轴相切D.与x轴相交,与y轴相交
【答案】B
【解答】解:∵点(﹣2,3)到x轴的距离是3,等于半径,
到y轴的距离是2,小于半径,
∴圆与y轴相交,与x轴相切.
故选:B.
【变式2-1】(2022•越秀区校级模拟)平面直角坐标系中,⊙P的圆心坐标为(﹣4,﹣5),半径为5,那么⊙P与y轴的位置关系是( )
A.相交B.相离C.相切D.以上都不是
【答案】A
【解答】解:∵⊙P的圆心坐标为(﹣4,﹣5),
∴⊙P到y轴的距离d为4
∵d=4<r=5
∴y轴与⊙P相交
故选:A.
【变式2-2】(2021秋•惠州期末)已知⊙O的半径为6cm,点O到直线l的距离为5cm,则直线l与⊙O( )
A.相交B.相离C.相切D.相切或相交
【答案】A
【解答】解:设圆的半径为r,点O到直线l的距离为d,
∵d=5cm,r=6cm,
∴d<r,
∴直线l与圆相交.
故选:A.
【考点2切线的性质】
【典例3】(2022•泰安一模)如图,AB是⊙O的直径,D为⊙O上一点,过上一点T作⊙O的切线TC,且TC⊥AD于点C.若∠DAB=58°,求∠ATC的度数是( )
A.51°B.58°C.61°D.58°
【答案】C
【解答】解:如图,连接OT,
∵CT为⊙O的切线,
∴OT⊥CT,
∵TC⊥AC,
∴OT∥AC,
∴∠DAT=∠OTA,
∵OA=OT,
∴∠OAT=∠OTA,
∴∠DAT=∠OAT=DAB=29°,
∵TC⊥AC,
∴∠ACT=90°,
∴∠ATC=90°﹣29°=61°,
故选C.
【变式3-1】(2022春•东台市期中)如图,点A是⊙O上一点,AB切⊙O于点A,连接OB交⊙O于点C,若∠B=36°,则∠ACO的度数为( )
A.63°B.54°C.60°D.126°
【答案】A
【解答】解:∵AB切⊙O于点A,
∴OA⊥AB,
∵∠B=36°,
∴∠AOC=90°﹣∠B=54°,
∵OA=OC,
∴∠OAC=∠OCA===63°,
故选:A.
【变式3-2】(2022•农安县校级模拟)如图,▱ABCD中,以边BC为直径的⊙O与边AD相切于点A,则∠B的大小为( )
A.60°B.55°C.45°D.30°
【答案】C
【解答】解:连接OA,
∵AD相切于⊙O于点A,
∴OA⊥AD,
在平行四边形ABCD中,AD∥BC,
∴OA⊥BC,
∴∠AOB=90°,
∴∠B+∠BAO=90°,
∵BC为⊙O的直径,
∴OA=OB,
∴∠B=∠BAO=×90°=45°,
故选:C.
【变式3-3】(2022春•渝中区校级月考)如图,在⊙O中,AB与⊙O相切于点A,连接OB交⊙O于点C,过点A作AD∥OB交⊙O于点D,连接CD.若∠B=40°,则∠OCD为( )
A.20°B.25°C.30°D.40°
【答案】B
【解答】解:如图,∵AB与⊙O相切于点A,
∴AB⊥OA,
∴∠OAB=90°,
∵∠B=40°,
∴∠AOB=90°﹣∠B=50°,
即∠AOC=50°,
∴∠D=∠AOC=25°,
∵AD∥OB,
∴∠OCD=∠D=25°,
故选:B.
【考点3 切线判定定理】
【典例4】(2021秋•武夷山市期末)如图,点P是⊙O的直径AB延长线上的一点(PB<OB),点E是线段OP的中点.在直径AB上方的圆上作一点C,使得EC=EP.
求证:PC是⊙O的切线.
【答案】略
【解答】证明:连接OC,
∵点E是线段OP的中点,
∴OE=EP,
∵EC=EP,
∴OE=EC=EP,
∴∠COE=∠ECO,∠ECP=∠P,
∵∠COE+∠ECO+∠ECP+∠P=180°,
∴∠ECO+∠ECP=90°,
∴OC⊥PC,
∵OC是⊙O的半径,
∴PC是⊙O的切线.
【变式4-1】(2021秋•长乐区期末)如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D.求证:直线BC是⊙O的切线.
【答案】略
【解答】证明:连接OD,
∵OA=OD,
∴∠ODA=∠OAD,
∵AD平分∠CAB,
∴∠CAD=∠OAD,
∴∠CAD=∠ODA,
∴OD∥AC,
∴∠ODB=∠C,
∵∠C=90°,
∴∠ODB=90°,
即OD⊥BC,
∵OD过圆心O,
∴直线BC是⊙O的切线.
【变式-2】(2021秋•合肥期末)已知,如图:AB是⊙O的直径,AB=AC,BC交⊙O于D,DE⊥AC于点E,求证:DE是⊙O的切线.
【答案】略
【解答】证明:连接OD,
∵AB=AC,
∴∠C=∠ABC,
又∵OD=OB
∴∠ODB=∠ABC,
∴∠ODB=∠C,
∴OD∥AC,
∵DE⊥AC,
∴DE⊥OD,
∴DE为⊙O的切线.
【变式4-3】(2021秋•天津期末)如图,已知AB是⊙O的直径,AC是弦,∠BAC的角平分线交⊙O于点D,DE⊥AC
于E.
(1)求证:DE是⊙O的切线;
(2)若AB=10,AC=6,求ED的长.
【答案】(1略 (2)4
【解答】(1)证明:连接OD,
∵DE⊥AE,
∴∠AED=90°,
∵AD平分∠BAE,
∴∠CAD=∠DAB,
∵OA=OD,
∴∠ADO=∠DAB,
∴∠CAD=∠ADO,
∴AC∥DO,
∴∠EDO=180°﹣∠E=90°,
∵OD是⊙O的半径,
∴DE是⊙O的切线;
(2)解:连接BC,
∵AB是⊙O的直径,
∴∠ACB=90°,
∴∠ECB=180°﹣∠ACB=90°,
∵∠E=∠EDO=90°,
∴四边形ECFD是矩形,
∴DE=CF,∠CFD=90°,
∵AB=10,AC=6,
∴BC===8,
∵OD⊥BC,
∴CF=BC=4,
∴DE=CF=4,
∴ED的长为4.
【考点4 三角形的内切圆与内心】
【典例5】(2022•石家庄模拟)如图,已知△ABC的周长是20,点O为三角形内心,连接OB、OC,OD⊥BC于点D,且OD=3,则△ABC的面积是( )
A.20B.25C.30D.35
【答案】C
【解答】解:如图,连接OA,过点O作OE⊥AB于点E,OF⊥AC于点F,
∵点O为三角形内心,OD⊥BC,
∴OD=OE=OF=3,
∴S△ABC=S△AOB+S△AOC+S△BOC
=AB•OE+AC•OF+BC•OD
=×OD(AB+AC+BC)
=3×20
=30.
故选:C.
【变式5-1】(2021秋•雄县期末)如图,△ABC中,内切圆Ⅰ和边BC、AC、AB分别相切于点D、E、F,若∠B=55°,∠C=75°,则∠EDF的度数是( )
A.55°B.60°C.65°D.70°
【答案】C
【解答】解:连接IE、IF,如图,
∵内切圆I和边AC、AB分别相切于点E、F,
∴OE⊥AC,OF⊥AB,
∴∠AEI=∠AFI=90°,
∴∠A=180°﹣∠EIF,
∵∠EDF=∠EIF,
∴∠EDF=90°﹣∠A,
∵∠B=55°,∠C=75°,
∴∠A=180°﹣∠B﹣∠C=180°﹣55°﹣75°=50°,
∴∠EDF=90°﹣×50°=65°.
故选:C.
【变式5-2】(2021秋•南开区期末)图,在Rt△ABC中,∠ACB=90°,⊙O是△ABC的内切圆,三个切点分别为D、E、F,若BF=2,AF=3,则△ABC的面积是 .
【答案】6
【解答】解:连接DO,EO,
∵⊙O是△ABC的内切圆,切点分别为D,E,F,
∴OE⊥AC,OD⊥BC,CD=CE,BD=BF=2,AF=AE=3,
又∵∠C=90°,
∴四边形OECD是矩形,
又∵EO=DO,
∴矩形OECD是正方形,
设EO=x,
则EC=CD=x,
在Rt△ABC中
BC2+AC2=AB2,
故(x+2)2+(x+3)2=52,
解得:x=1,
∴BC=3,AC=4,
∴S△ABC=×3×4=6,
故答案为:6.
【变式5-3】(2021秋•肇源县期末)如图,△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,且AD=2,△ABC的周长为14,则BC的长为 .
【答案】5
【解答】解:∵⊙O与AB,BC,CA分别相切于点D,E,F
∴AF=AD=2,BD=BE,CE=CF,
∵△ABC的周长为14,
∴AD+AF+BE+BD+CE+CF=14,
∴2(BE+CE)=10,
∴BC=5.
故答案为:5.
初中数学北师大版九年级下册7 切线长定理精品练习: 这是一份初中数学北师大版九年级下册7 切线长定理精品练习,共10页。
初中数学北师大版九年级下册5 确定圆的条件优秀课时训练: 这是一份初中数学北师大版九年级下册5 确定圆的条件优秀课时训练,文件包含专题35直线与圆的位置关系专项训练原卷版docx、专题35直线与圆的位置关系专项训练解析版docx等2份试卷配套教学资源,其中试卷共31页, 欢迎下载使用。
数学九年级下册5 确定圆的条件精品课堂检测: 这是一份数学九年级下册5 确定圆的条件精品课堂检测,共23页。