所属成套资源:【专项练习】全套专题数学八年级上册 特训02 期中选填压轴题(第16-18章)-八年级数学上册期中期
- 【专项练习】全套专题数学八年级上册 特训02 期中选填压轴题(第16-18章)-八年级数学上册期中期末挑战满分冲刺卷(沪教版,上海专用)(习题及答案) 试卷 0 次下载
- 【专项练习】全套专题数学八年级上册 特训03 期中选填题汇编(第16-18章)-八年级数学上册期中期末挑战满分冲刺卷(沪教版,上海专用)(习题及答案) 试卷 0 次下载
- 【专项练习】全套专题数学八年级上册 特训04 期中解答题汇编(第16-18章)-八年级数学上册期中期末挑战满分冲刺卷(沪教版,上海专用)(习题及答案) 试卷 0 次下载
- 【专项练习】全套专题数学八年级上册 特训06 期末历年选填压轴题(第16-19章)-八年级数学上册期中期末挑战满分冲刺卷(沪教版,上海专用)(习题及答案) 试卷 0 次下载
- 【专项练习】全套专题数学八年级上册 特训08 期末解答题汇编(精选39题)-八年级数学上册期中期末挑战满分冲刺卷(沪教版,上海专用)(习题及答案) 试卷 0 次下载
【专项练习】全套专题数学八年级上册 特训05 期末历年解答压轴题(第16-19章)-八年级数学上册期中期末挑战满分冲刺卷(沪教版,上海专用)(习题及答案)
展开
这是一份【专项练习】全套专题数学八年级上册 特训05 期末历年解答压轴题(第16-19章)-八年级数学上册期中期末挑战满分冲刺卷(沪教版,上海专用)(习题及答案),文件包含特训05期末历年解答压轴题第16-19章原卷版docx、特训05期末历年解答压轴题第16-19章解析版docx等2份试卷配套教学资源,其中试卷共94页, 欢迎下载使用。
1.(2022·上海·八年级期末)如图,在Rt△ABC中,∠C=90°,AB=,BC=,点D是边AB的中点,点E是边AC上一个动点,作线段DE的垂直平分线分别交边AC、BC于点M、N,设AM=x,ME=y.
(1)当点E与点C重合时,求ME的长;
(2)求y关于x的函数解析式,并写出函数的定义域;
(3)当MN经过△ABC一边中点时,请直接写出ME的长.
2.(2020·上海浦东新·八年级期末)如图1,已知锐角△ABC中,CD、BE分别是AB、AC边上的高,M、N分别是线段BC、DE的中点.
(1)求证:MN⊥DE.
(2)连结DM,ME,猜想∠A与∠DME之间的关系,并证明猜想.
(3)当∠A变为钝角时,如图2,上述(1)(2)中的结论是否都成立,若结论成立,直接回答,不需证明;若结论不成立,说明理由.
3.(2022·上海·八年级期末)已知:在Rt△ABC中,∠C=90°,∠B=30°,BC=6,左右作平行移动的等边三角形DEF的两个顶点E、F始终在边BC上,DE、DF分别与AB相交于点G、H.
(1)如图1,当点F与点C重合时,点D恰好在斜边AB上,求△DEF的周长;
(2)如图2,在△DEF作平行移动的过程中,图中是否存在与线段CF始终相等的线段?如果存在,请指出这条线段,并加以证明;如果不存在,请说明理由;
(3)假设C点与F点的距离为x,△DEF与△ABC的重叠部分的面积为y,求y与x的函数关系式,并写出定义域.
4.(2019·上海市市西初级中学八年级期末)如图,在平面直角坐标系中,点为正半轴上一点,过点的直线轴,且直线分别与反比例函数和的图像交于两点,.
求的值;
当时,求直线的解析式;
在的条件下,若轴上有一点,使得为等腰三角形,请直接写出所有满足条件的点的坐标.
5.(2022·上海松江·八年级期末)如图,在Rt△ABC中,∠ABC=90°,∠C=30°,AB=1,点D是边AC上一点(不与点 A、C重合),EF垂直平分BD,分别交边AB、BC于点E、F,联结DE、DF.
(1)如图1,当BD⊥AC时,求证:EF=AB;
(2)如图2,设CD=x,CF=y,求y与x的函数解析式,并写出函数的定义域;
(3)当BE=BF时,求线段CD的长.
6.(2020·上海市浦东模范中学八年级期末)如图,已知ABC中,,,AB=6,点P是射线CB上一点(不与点B重合),EF为PB的垂直平分线,交PB于点F,交射线AB于点E,联结PE、AP.
(1)求∠B的度数;
(2)当点P在线段CB上时,设BE=x,AP=y,求y关于x的函数解析式,并写出函数的定义域;
(3)当APB为等腰三角形时,请直接写出AE的值.
7.(2022·上海市崇明区横沙中学八年级期末)如图,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=3,点P是边AC上的动点(点P与点A不重合),D是边AB上的动点,且PA=PD,ED⊥DP,交边BC于点E.
(1)求证:BE=DE;
(2)若BE=x,AD=y,求y关于x的函数关系式并写出定义域;
(3)延长ED交CA的延长线于点F,连接BP,若△BDP与△DAF全等,求线段PE的长.
8.(2021·上海·八年级期中)如图,已知在中,,,,在线段上有动点,在射线上有动点,且,联结交于点.
(1)当点在边(与点、不重合)上,线段与线段之间有怎样的大小关系?试证明你的结论.
(2)过点作边的垂线,垂足为点,随着、两点的移动,线段的长能确定吗?若能确定,请求出的长;若不能确定,请说明理由.
9.(2022·上海·八年级单元测试)如图,已知在Rt△ABC中,∠C=90°,∠CAB=60°,AB=10,点F是AB中点,点D是射线CB上的一个动点,△ADE是等边三角形,联结EF.
(1)当点D在线段CB上时,
①求证:△AEF≌△ADC;
②联结BE,设C、D间距离为x,,求y关于x的函数解析式及定义域;
(2)当∠DAB=15°时,求△ADE的面积(直接写出答案).
10.(2022·上海浦东新·八年级期末)如图,中,,,.点P是射线CB上的一点(不与点B重合),EF是线段PB的垂直平分线,交PB与点F,交射线AB与点E,联结PE、AP.
(1)求的度数;
(2)当点P在线段CB上时,设,的面积为y,求y关于x的函数解析式,并写出函数的定义域;
(3)如果,请直接写出的面积.
11.(2022·上海·八年级专题练习)如图,在直角坐标平面内,正比例函数的图像与一个反比例函数图像在第一象限内的交点为点A,过点A作AB⊥x轴,垂足为点B,AB=3.
(1)求反比例函数的解析式;
(2)在直线AB上是否存在点C,使点C到直线OA的距离等于它到点B的距离?若存在,求点C的坐标;若不存在,请说明理由;
(3)已知点P在直线AB上,如果△AOP是等腰三角形,请直接写出点P的坐标.
12.(2022·上海市风华初级中学八年级期末)如图,在△ABC中,AC=2,AB=4,BC=6,点P为边BC上的一个动点(不与点B、C重合),点P关于直线AB的对称点为点Q,联结PQ、CQ,PQ与边AB交于点D.
(1)求∠B的度数;
(2)联结BQ,当∠BQC=90°时,求CQ的长;
(3)设BP=x,CQ=y,求y关于x的函数解析式,并写出函数的定义域.
13.(2022·上海·八年级专题练习)已知:如图,在△ABC纸片中,AC=3,BC=4,AB=5,按图所示的方法将△ACD沿AD折叠,使点C恰好落在边AB上的点C′处,点P是射线AB上的一个动点.
(1)求折痕AD长.
(2)点P在线段AB上运动时,设AP=x,DP=y.求y关于x的函数解析式,并写出此函数的定义域.
(3)当△APD是等腰三角形时,求AP的长.
14.(2022·上海·八年级开学考试)如图1所示,已知△ABC中,∠ACB=90°,BC=2,AC=,点D在射线BC上,以点D为圆心,BD为半径画弧交AB边AB于点E,过点E作EF⊥AB交边AC于点F,射线ED交射线AC于点G.
(1)求证:EA=EG;
(2)若点G在线段AC延长线上时,设BD=x,FC=y,求y关于x的函数解析式并写出定义域;
(3)联结DF,当△DFG是等腰三角形时,请直接写出BD的长度.
15.(2022·上海市南洋模范中学八年级期末)如图,在中,,,,是边上不与点、重合的任意一点,,垂足为点,是的中点.
(1)求证:;
(2)如果设,,求与的函数解析式,并写出函数的定义域;
(3)当的面积为时,求的值.
16.(2021·上海·八年级专题练习)在直角梯形中,,,,联结,如图(a).点沿梯形的边,按照点移动,设点移动的距离为,.
(1)当点从点移动到点时,与的函数关系如图(b)中折线所示.则______,_____,_____.
(2)在(1)的情况下,点按照点移动(点与点不重合),是否能为等腰三角形?若能,请求出所有能使为等腰三角形的的值;若不能,请说明理由.
17.(2021·上海·八年级专题练习)如图(1),Rt△AOB中,∠A=90°,,OB=2,∠AOB的平分线OC交AB于C,过作与垂直的直线.动点从点出发沿折线以每秒1个单位长度的速度向终点运动,运动时间为t秒,同时动点Q从点C出发沿折线以相同的速度运动,当点到达点时,同时停止运动.
(1)OC= ,BC= ;
(2)设△CPQ的面积为S,求S与t的函数关系式;
(3)当P在OC上Q在ON上运动时,如图(2),设PQ与OA交于点M,当为何值时,△OPM为等腰三角形?求出所有满足条件的t值.
18.(2021·上海·八年级专题练习)如图,在四边形ABCD中,∠ADC=∠ABC=90°,CB=CD,点E、F分别在AB、AD上,AE=AF.连接CE、CF.
(1)求证:CE=CF;
(2)如果∠BAD=60°,CD=.
①当AF=时,设,求与的函数关系式;(不需要写定义域)
②当AF=2时,求△CEF的边CE上的高.
19.(2020·上海市曹杨第二中学附属学校八年级期中)如图,在中,,平分线交于点,点为上一动点,过作直线于,分别交直线、、于点、、.
(1)当直线经过点时(如图2),求证:;
(2)当是线段的中点时,写出线段和线段之间的数量关系,并证明;
(3)请直接写出、和之间的数量关系.
20.(2021·上海·八年级专题练习)如图,在中,,,垂足为,点是边上的一个动点,过点作交线段于点,作交于点,交线段于点,设.
(1)用含的代数式表示线段的长;
(2)设的面积为,求与之间的函数关系式,并写出定义域;
(3)若为直角三角形,求出的长.
21.(2022·上海·同济大学附属七一中学八年级期中)如图1,在△ABC中,∠ACB=2∠B,∠BAC的平分线AO交BC于点D,点H为AO上一动点,过点H作直线l⊥AO于H,分别交直线AB、AC、BC、于点N、E、M.
(1)当直线l经过点C时(如图2),求证:BN=CD;
(2)当M是BC中点时,写出CE和CD之间的等量关系,并加以证明;
(3)请直接写出BN、CE、CD之间的等量关系.
22.(2022·上海·八年级专题练习)如图,在平面直角坐标系中,是等边三角形.
(1)在y轴正半轴取一点E,使得是一个等腰直角三角形,与交于M,已知,求.
(2)若等边的边长为6,点C在边上,点D在边上,且.反比例函数的图象恰好经过点C和点D,求反比例函数解析式.(此题无需写括号理由)
23.(2022·上海·七年级专题练习)在等边三角形ABC的两边AB、AC所在直线上分别有两点M、N,P为△ABC外一点,且∠MPN=60°,∠BPC=120°,BP=CP.探究:当点M、N分别在直线AB、AC上移动时,BM,NC,MN之间的数量关系.
(1)如图①,当点M、N在边AB、AC上,且PM=PN时,试说明MN=BM+CN.
(2)如图②,当点M、N在边AB、AC上,且PM≠PN时,MN=BM+CN还成立吗?
答: .(请在空格内填“一定成立”“不一定成立”或“一定不成立”).
(3)如图③,当点M、N分别在边AB、CA的延长线上时,请直接写出BM,NC,MN之间的数量关系.
24.(2021·上海民办行知二中实验学校八年级期中)阅读材料:
两点间的距离公式:如果直角坐标系内有两点A(x1,y1)、B(x2,y2),那么A、B两点的距离AB=.则AB2=(x1﹣x2)2+(y1﹣y2)2.
例如:若点A(4,1),B(2,3),则AB=
根据上面材料完成下列各题:
(1)若点A(﹣2,3),B(1,﹣3),则A、B两点间的距离是 .
(2)若点A(﹣2,3),点B在坐标轴上,且A、B两点间的距离是5,求B点坐标.
(3)若点A(x,3),B(3,x+1),且A、B两点间的距离是5,求x的值.
25.(2021·上海民办行知二中实验学校八年级期中)如图,点B在函数y=(x>0)的图象上,过点B分别作x轴和y轴的平行线交函数y=(x>0)的图象于点A,C.
(1)若点B的坐标为(1,2),求A,C两点的坐标;
(2)若点B是y=(x>0)的图象上任意一点,求△ABC的面积.
(3)OC平分OA与x轴正半轴的夹角,将△ABC沿AC翻折后得到△AB'C,点B′落在OA上,求四边形OABC的面积.
26.(2022·上海·八年级期末)如图1,在中,,是的中点是射线上一个动点,联结,过点作的垂线,交射线于.
(1)如图2,如果点与点重合,求证:;
(2)如图3,如果,求的长;
(3)设,求关于的函数关系式,并写出的取值范围.
27.(2022·上海市黄浦大同初级中学八年级期中)已知:如图,直线上有一点,直线上有一点.
(1)求点P和点Q的坐标(其中点Q的坐标用含k的代数式表示).
(2)过点P分别作轴,轴,过点Q分别作轴,如果的面积等于的面积的两倍,请求出k的值.
(3)在(2)的条件下,在直线上是否存在点,使?如果存在,请求出点的坐标;如果不存在,请说明理由.
28.(2022·上海·八年级期末)已知在平面直角坐标中,点在第一象限内,且,反比例函数的图像经过点,
(1)当点的坐标为时(如图),求这个反比例函数的解析式;
(2)当点在反比例函数的图像上,且在点的右侧时(如图2),用含字母的代数式表示点的坐标;
(3)在第(2)小题的条件下,求的值.
29.(2022·上海·八年级专题练习)已知反比例函数的图象经过点.
(1)试确定此反比例函数的解析式;
(2)点是坐标原点,将线段绕点顺时针旋转得到线段.判断点是否在此反比例函数的图象上,并说明理由;
(3)已知点也在此反比例函数的图象上(其中),过点作轴的垂线,交轴于点.若线段上存在一点,使得的面积是,设点的纵坐标为,求的值.
30.(2022·上海·上外附中八年级期末)如图, 在平面直角坐标系中, 是等边三角形.
(1)在 轴正半轴取一点 ,使得 是一个等腰直角三角形, 与 交 于 ,已知 ,求 ;
(2)若等边 的边长为 6 , 点 在边 上, 点 在边 上, 且 .反比例函数 的图像恰好经过点 和点 , 求反比例函 数解析式.(此题无须写括号理由)
31.(2018·上海浦东新·八年级期末)如图,在平面直角坐标系中,已知直线与反比例函数的图像交于点A,且点A的横坐标为1,点B是x轴正半轴上一点,且⊥.
(1)求反比例函数的解析式;
(2)求点B的坐标;
(3)先在的内部求作点P,使点P到的两边OA、OB的距离相等,且PA=PB.(不写作法,保留作图痕迹,在图上标注清楚点P)
32.(2022·上海·八年级专题练习)阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如,善于思考的小明进行了以下探索:
若设(其中a、b、m、n均为整数),则有.这样小明就找到了一种把类似的式子化为平方式的方法,请你仿照小明的方法探索并解决下列问题:
(1)若,当a、b、m、n均为整数时,用含m、n的式子分别表示a、b,得:a= ,b= ;
(2)若,且a、m、n均为正整数,求a的值;
(3)化简:.
33.(2021·上海·九年级专题练习)请阅读下列材料,并完成相应的任务.
古希腊几何学家海伦,在数学史上以解决几何测量问题而闻名.在他的著作《度量》一书中,给出了三角形面积的计算公式(海伦公式):如果一个三角形的三边长分别为,记,那么三角形的面积是.
印度算术家波罗摩笈多和婆什迦罗还给出了四边形面积的计算公式:如果一个四边形的四边长分别为,记,那么四边形的面积是(其中,和表示四边形的一组对角的度数)
根据上述信息解决下列问题:
(1)已知三角形的三边是4,6,8,则这个三角形的面积是
(2)小明的父亲是工程师,设计的某个零件的平面图是如图的四边形,已知,,,,,.求出这个零件平面图的面积.
34.(2021·上海市刘行新华实验学校八年级阶段练习)阅读理解:法国数学家韦达在研究一元二次方程时有一项重大发现:如果一元二次方程的两个根分别是和,那么,.
例如:方程的两根分别是和,则,.
请同学们阅读后利用上述结论完成下列问题:
(1)已知方程的两根分别是和,则______,______.
(2)已知方程的两根分别是和,求的值.
(3)已知和是方程的两根,请构造一个一元二次方程,使它的两根分别是和.
35.(2022·上海·八年级单元测试)在学了乘法公式“”的应用后,王老师提出问题:求代数式的最小值.要求同学们运用所学知识进行解答.
同学们经过探索、交流和讨论,最后总结出如下解答方法;
解:,
∵,∴.
当时,的值最小,最小值是1.
∴的最小值是1.
请你根据上述方法,解答下列各题:
(1)直接写出的最小值为_____.
(2)求代数式的最小值.
(3)你认为代数式有最大值还是有最小值?求出该最大值或最小值.
(4)若,求x+y的最小值.
36.(2022·上海·八年级专题练习)每年的3月8日是国际劳动妇女节,是世界各国妇女争取和平、平等、发展的节日,沙坪坝某商店抓住这一机会,将A、B两种巧克力进行降价促销活动,在这一天前来购买这两种巧克力的顾客共有400名,每名顾客均购买了一盒巧克力,其中A、B两种的巧克力的销售单价分别为90元和50元.
(1)若选择购买B种巧克力的人数不超过购买A种巧克力数的0.6倍.求至少有多少人选择购买A种巧克力?
(2)“七夕”节是中国的情人节,该商店估计当天购买巧克力的人会比较多,于是提高了A种巧克力的售价,结果发现“七夕”节当天前来购买巧克力的顾客人数出现了下降,经统计发现与(1)问中选择A种巧克力的人数最少时相比,A种巧克力每上涨3元,购买A种巧克力的人数会下降5人,同时购买B种巧克力的人数也下降3人,但是B种巧克力的售价没变,最终“七夕”节期间两种巧克力的总销售额与(1)问中选择A种巧克力的顾客最少时的两种巧克力的总销售额持平,求“七夕”节当天A种巧克力的售价.
相关试卷
这是一份沪教版七年级数学上册期中期末挑战满分冲刺卷特训05期末历年解答压轴题(第9-11章)(原卷版+解析),共85页。试卷主要包含了解答题,三步综合起来,.等内容,欢迎下载使用。
这是一份【专项练习】全套专题数学八年级上册 特训08 期末解答题汇编(精选39题)-八年级数学上册期中期末挑战满分冲刺卷(沪教版,上海专用)(习题及答案),文件包含特训08期末解答题汇编精选39题原卷版docx、特训08期末解答题汇编精选39题解析版docx等2份试卷配套教学资源,其中试卷共55页, 欢迎下载使用。
这是一份【专项练习】全套专题数学八年级上册 特训06 期末历年选填压轴题(第16-19章)-八年级数学上册期中期末挑战满分冲刺卷(沪教版,上海专用)(习题及答案),文件包含特训06期末历年选填压轴题第16-19章原卷版docx、特训06期末历年选填压轴题第16-19章解析版docx等2份试卷配套教学资源,其中试卷共51页, 欢迎下载使用。
相关试卷 更多
【专项练习】全套专题数学八年级上册 特训04 期中解答题汇编(第16-18章)-八年级数学上册期中期末挑战满分冲刺卷(沪教版,上海专用)(习题及答案)
【专项练习】全套专题数学八年级上册 特训03 期中选填题汇编(第16-18章)-八年级数学上册期中期末挑战满分冲刺卷(沪教版,上海专用)(习题及答案)
【专项练习】全套专题数学八年级上册 特训02 期中选填压轴题(第16-18章)-八年级数学上册期中期末挑战满分冲刺卷(沪教版,上海专用)(习题及答案)
【专项练习】全套专题数学八年级上册 特训01 期中解答压轴题(第16-18章)-八年级数学上册期中期末挑战满分冲刺卷(沪教版,上海专用)(习题及答案)