还剩19页未读,
继续阅读
成套系列资料,整套一键下载
- 【全套精品专题】浙教版八年级上册 数学复习专题精讲 专题1.1 全等三角形七大基本模型 专项讲练(解析版) 试卷 1 次下载
- 【全套精品专题】浙教版八年级上册 数学复习专题精讲 专题1.2 全等三角形相关辅助线五种方法 专项讲练(解析版) 试卷 0 次下载
- 【全套精品专题】浙教版八年级上册 数学复习专题精讲 专题2.1 等腰(直角)三角形中的分类讨论问题 专项讲练(解析版) 试卷 0 次下载
- 【全套精品专题】浙教版八年级上册 数学复习专题精讲 专题3.2 一元一次不等式(组)应用题 五大题型专项讲练(解析版) 试卷 0 次下载
- 【全套精品专题】浙教版八年级上册 数学复习专题精讲 专题3.3 一元一次不等式 重难点题型10个(解析版) 试卷 0 次下载
【全套精品专题】浙教版八年级上册 数学复习专题精讲 第13讲 一元一次不等式(组)常见题型分类总复习-【专题突破】(解析版)
展开
这是一份【全套精品专题】浙教版八年级上册 数学复习专题精讲 第13讲 一元一次不等式(组)常见题型分类总复习-【专题突破】(解析版),共22页。
第13讲 一元一次不等式(组)常见题型分类总复习类型一 “程序”类问题1.运行程序如图所示,规定:从“输入一个值x”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x的取值范围是( )A.12.75<x≤24.5 B.x<24.5 C.12.75≤x<24.5 D.x≤24.5【分析】根据运算程序,前两次运算结果小于等于95,第三次运算结果大于95列出不等式组,然后求解即可.【解答】解:由题意得:,解不等式①得,x≤48,解不等式②得,x≤24.5,解不等式③得,x>12.75,所以,x的取值范围是12.75<x≤24.5.故选:A.如图所示的是一个运算程序: 例如:根据所给的运算程序可知:当x=10时,5×10+2=52>37,则输出的值为52;当x=5时,5×5+2=27<37,再把x=27代入,得5×27+2=137>37,则输出的值为137.若数x需要经过三次运算才能输出结果,则x的取值范围是( )A.x<7 B.﹣≤x<7 C.﹣≤x<1 D.x<﹣或x>7【分析】根据该程序运行三次才能输出结果,即可得出关于x的一元一次不等式组,解之即可得出结论.【解答】解:依题意得:,解得:﹣≤x<1.故选:C.3.如图是一个运行程序,从“输入整数x”到“结果是否>19”为一次操作程序,若输入x后程序操作仅进行了二次就停止,则输入整数x的值可能是( )A.7 B.7或9 C.9或11 D.13【分析】根据程序操作仅进行了二次就停止,即可得出关于x的一元一次不等式组,解之即可得出x的取值范围,再对照四个选项即可找出可能输入的整数值.【解答】解:依题意得:,解得:7<x≤11.又∵x为整数,∴x可以为8,9,10,11,故选:C.4.按下面程序计算,若开始输入x的值为正数,最后输出的结果为656,则满足条件所有x的值是 .【分析】利用逆向思维来做,分析第一个数就是直接输出656,可得方程5x+1=656,解方程即可求得第一个数,再求得输出为这个数的第二个数,以此类推即可求得所有答案.【解答】解:我们用逆向思维来做:第一个数就是直接输出其结果的:5x+1=656,解得:x=131;第二个数是(5x+1)×5+1=656,解得:x=26;同理:可求出第三个数是5;第四个数是,∴满足条件所有x的值是131或26或5或.故答案为:131或26或5或.类型二 “字母系数”类问题5.根据不等式的基本性质,可将“mx<2”化为“x”,则m的取值范围是 .【分析】利用不等式的基本性质求出m的范围即可.【解答】解:∵根据不等式的基本性质,可将“mx<2”化为“x”,∴m<0,故答案为:m<06.解关于x的不等式 ax﹣x﹣2>0.解:移项、合并同类项,得 (a﹣1)x>2.当 a﹣1>0,即 a>1 时,不等式的解集为;当 a﹣1=0,即a=1时,0>2 不成立,所以原 不等式无解;当 a﹣1<0,即 a<1 时,不等式的解集为x<.【解决问题】(1)解关于x的不等式 ax﹣x﹣2<0;(2)若关于x的不等式 a(x﹣1)>x+1﹣2a 的解集是 x<﹣1,求a的取值范围.【分析】(1)由ax﹣x﹣2<0知(a﹣1)x<2,再分a﹣1>0、a﹣1=0和a﹣1<0三种情况分别求解即可;(2)原不等式依次去括号、移项、合并同类项得出(a﹣1)x>﹣(a﹣1),结合不等式的解集为x<﹣1得出关于a的不等式,解之即可.【解答】解:(1)∵ax﹣x﹣2<0,∴(a﹣1)x<2,当a﹣1>0,即a>1时,x<;当a﹣1=0,即a=1时,0<2恒成立,不等式的解集为全体实数;当a﹣1<0,即a<1时,x>;(2)∵a(x﹣1)>x+1﹣2a,∴ax﹣a>x+1﹣2a,∴ax﹣x>1﹣a,则(a﹣1)x>﹣(a﹣1),∵不等式的解集为x<﹣1,∴a﹣1<0,解得a<1.类型三 “双向不等式”类问题7.解下列双向不等式【分析】双向不等式其实就是不等式组,当只有中间有未知数时,可以直接解答,不需要拆分成不等式组;但是当两边或者三边都有未知数时,通常转化为普通一元一次不等式组来求解【解答】解:①∵;②原不等式可转化为;解不等式①得:;解不等式②得:;∴该不等式的解集为:类型四 “新定义”类问题8.新定义:对非负数x“四舍五入”到个位的值记为(x).即当n为非负整数时,若,则(x)=n.如(0.46)=0,(3.67)=4.下列结论:①(2.493)=2;②(3x)=3(x);③若,则x的取值范围是6≤x<10;④当x≥0,m为非负整数时,有(m+2022x)=m+(2022x);其中正确的是 (填写所有正确的序号).【分析】对于①可直接判断,②可用举反例法判断,③、④我们可以根据题意所述利用不等式判断.【解答】解:①(2.493)=2,故①符合题意;②(3x)≠3(x),例如当x=0.3时,(3x)=1,3(x)=0,故②不符合题意;③若(x﹣1)=1,则,解得:6≤x<10,故③符合题意;④m为非负整数,故(m+2020x)=m+(2020x),故④符合题意;综上可得①③④正确.故答案为:①③④.9.我们定义:如果两个一元一次不等式有公共解,那么称这两个不等式互为“云不等式”,其中一个不等式是另一个不等式的“云不等式”.(1)在不等式①2x﹣1<0,②x≤2,③x﹣(3x﹣1)<﹣5中,不等式x≥2的“云不等式”是 ;(填序号)(2)若关于x的不等式x+2m≥0不是2x﹣3<x+m的“云不等式”,求m的取值范围;(3)若a≠﹣1,关于x的不等式x+3≥a与不等式ax﹣1<a﹣x互为“云不等式”,求a的取值范围.【分析】(1)根据云不等式的定义即可求解;(2)解不等式x+2m≥0可得x≥﹣2m,解不等式2x﹣3<x+m得x<m+3,再根据云不等式的定义可得﹣2m>m+3,解不等式即可求解;(3)分两种情况讨论根据云不等式的定义得到含a的不等式,解得即可.【解答】解:(1)不等式2x﹣1<0和不等式x≥2没有公共解,故①不是不等式x≥2的“云不等式”;不等式x≤2和不等式x≥2有公共解,故②是不等式x≥2的“云不等式”;不等式x﹣(3x﹣1)<﹣5和不等式x≥2有公共解,故③是不等式x≥2的“云不等式”;故答案为:②③;(2)解不等式x+2m≥0可得x≥﹣2m,解不等式2x﹣3<x+m得x<m+3,∵关于x的不等式x+2m≥0不是2x﹣3<x+m的“云不等式”,∴﹣2m≥m+3,解得m≤﹣1,故m的取值范围是m≤﹣1;(3)①当a+1>0时,即a>﹣1时,依题意有a﹣3<1,即a<4,故﹣1<a<4;②当a+1<0时,即a<﹣1时,始终符合题意,故a<﹣1;综上,a的取值范围为a<﹣1或﹣1<a<4.10.设x为实数,我们用{x}表示不小于x的最小整数,如:{3.2}=4,{﹣2}=﹣2.在此规定下,任一实数都能写成x={x}﹣a的形式.(1)若﹣1.2={﹣1.2}﹣a,则a= ;(2)直接写出{x}、x与x+1这三者的大小关系: ;(3)满足{2x+5}=4的x的取值范围是 ;满足{2.5x﹣3}=4x﹣的x的取值是 .【分析】(1)利用{x}表示不小于x的最小整数,可得方程﹣1.2=﹣1﹣a,解方程即可求解;(2)利用x={x}﹣b,其中0≤b<1得出0≤{x}<x+1,进而得出答案;(3)利用(2)中所求得出2x+5≤4<2x+5+1,进而得出即可;利用(2)中所求得出2.5x﹣3≤4x﹣<(2.5x﹣3)+1,进而得出即可.【解答】解:(1)∵﹣1.2={﹣1.2}﹣a,∴﹣1.2=﹣1﹣a,解得a=0.2;(2)x≤{x}<x+1,理由:∵x={x}﹣b,其中0≤b<1,∴b={x}﹣x,∴0≤{x}<x+1,∴x≤{x}<x+1;(3)依题意有2x+5≤4<2x+5+1,解得:﹣1<x≤﹣;依据题意有2.5x﹣3≤4x﹣<(2.5x﹣3)+1且4x﹣为整数,解得:﹣≤x<﹣,∴﹣≤4x﹣<﹣,∴整数4x﹣为﹣6,﹣5,解得:x=﹣或x=﹣.故答案为:0.2;x≤{x}<x+1;﹣1<x≤﹣,﹣或﹣.11.阅读与思考请仔细阅读材料,并完成相应任务.任务一:你认为小明和小亮的方法正确吗?若正确请补充完整解题过程;若不正确,请说明理由.任务二:请尝试利用已学知识解关于x的不等式:<2.【分析】根据两数相除,同号得正,分类讨论求出不等式的解集即可.【解答】解:任务一:小明的方法正确,根据“两数相除,同号得正”,可以将原不等式转化为或,解得x>或x<﹣1;小亮的方法错误;不符合不等式的性质.任务二:<2,整理得﹣2<0,即>0,根据“两数相除,同号得正”,可以将原不等式转化为或,解得x>﹣3或x<﹣8.类型五 “含字母参数”类不等式解的问题12.已知不等式2(x+3)﹣5x+a>0的解集中恰有3个非负整数,则a的取值范围为( )A.2<a≤3 B.2≤a<3 C.0<a≤3 D.0≤a<3【分析】先求出不等式的解集,再根据其非负整数解列出不等式,解此不等式即可.【解答】解:解不等式2(x+3)﹣5x+a>0得到:x<a+2,∵不等式2(x+3)﹣5x+a>0的解集中恰有3个非负整数,∴3个非负整数解是0,1,2,∴2<a+2≤3,解得0<a≤3.故选:C.13.下面说法错误的个数有( )①若m>n,则ma2>na2;②如果>,那么a>b;③x>4是不等式x+3≥6的解的一部分;④不等式两边乘(或除以)同一个数,不等号的方向不变;⑤不等式x+3<3的整数解是0.A.1个 B.2个 C.3个 D.4个【分析】利用不等式的基本性质,解集与解的定义判断即可.【解答】解:①若m>n且a≠0,则ma2>na2,故错误,符合题意;②如果>,那么a>b,故正确,不符合题意;③∵不等式x+3≥6的解集为x≥3,∴x>4是不等式x+3≥6的解的一部分,故正确,不合题意;④不等式两边乘(或除以)同一个正数,不等号的方向不变,故错误,符合题意;⑤∵不等式x+3<3的解集为x<0,故错误,符合题意.故选:C.14.关于x的不等式3x﹣m+2>0的最小整数解为2,则实数m的取值范围是( )A.5≤m<8 B.5<m<8 C.5≤m≤8 D.5<m≤8【分析】解出不等式,然后根据不等式的最小整数解为2,即可列出关于m的不等式,从而求出m的取值范围.【解答】解:3x﹣m+2>0,3x>m﹣2,,∵不等式的最小整数解为2,∴,解得:5≤m<8,故选:A.15.已知关于x的不等式组恰有4个整数解,则m的取值范围为( )A.<m< B.≤m< C.<m≤ D.≤m≤【分析】根据关于x的不等式组的解集和整数解的个数确定关于m的不等式组,再求出解集即可.【解答】解:关于x的不等式组有解,其解集为8<x≤4m﹣2,∵关于x的不等式组恰有4个整数解,∴12≤4m﹣2<13,解得≤m<,故选:B.16.已知关于x的不等式组的所有整数解的和为﹣5,则m的取值范围为( )A.﹣6<m≤﹣3或3<m≤6 B.﹣6≤m<﹣3或3≤m<6 C.﹣6≤m<﹣3 D.﹣6<m≤﹣3【分析】分别求出每一个不等式的解集,根据不等式组的整数解的情况列出关于m的不等式,解之即可.【解答】解:由3x﹣m<0,得:x<,又x>﹣4,且不等式组所有整数解的和为﹣5,∴不等式组的整数解为﹣3、﹣2或﹣3、﹣2、﹣1、0、1,∴﹣2<≤﹣1或1<≤2,解得﹣6<m≤﹣3或3<m≤6,故选:A.17.若实数m使得关于x的不等式组无解,则关于y的分式方程的最小整数解是 .【分析】先求出每个不等式的解集,然后根据不等式组无解求出m的取值范围,再解分式方程,从而确定y的取值范围,即可得到答案.【解答】解:解不等式2x>2得:x>1,解不等式3x<m+1得:,∵不等式组无解,∴,解得m≤2;,去分母得2y=4﹣m,解得,∵m≤2,∴4﹣m≥2,∴,又∵y﹣1≠0,∴y>1,∴y的最小整数解为2,故答案为:2.18.若关于x的不等式组有解,且关于x的方程kx=2(x﹣2)﹣(3x+2)有非负整数解,则符合条件的所有整数k的和为 .【分析】先根据不等式组有解得k的取值,利用方程有非负整数解,将k的取值代入,找出符合条件的k值,并相加.【解答】解:,解①得:x≥4k+1,解②得:x<5k+5,关于x的不等式组有解,∴5k+5>4k+1,∴k>﹣4,解关于x的方程kx=2(x﹣2)﹣(3x+2)得,x=﹣,因为关于x的方程kx=2(x﹣2)﹣(3x+2)有非负整数解,当k=﹣3时,x=3当k=﹣2时,x=6,∴﹣2﹣3=﹣5;故答案为:﹣5.类型六 “分配”问题19.有一家人参加登山活动,他们要将矿泉水分装在旅行包内带上山.若每人带2瓶,则剩余3瓶;若每人带3瓶,则有一人带了矿泉水,但不足2瓶,则这家参加登山的人数为( )A.4人 B.5人 C.3人 D.5人或6人【分析】设这家参加登山的人数为x人,则矿泉水有(2x+3)瓶,根据题意列出不等式组,再解即可.【解答】解:设这家参加登山的人数为x人,则矿泉水有(2x+3)瓶,由题意得:,解得:4<x<6,∵x为整数,∴x=5,故选:B.20.我校团委组织团员志愿者在重阳节乘车前往敬老院慰问孤寡老人,参加的团员志愿者不足50人,联系“小白”车若干辆,每辆车如果坐6人,就剩下18人无车可坐;每辆车坐10人,那么其余的车坐满后,仅有一辆车不空也不满.则参加次活动的团员志愿者有( )名.A.54 B.48 C.46 D.45【分析】设联系“小白”车x辆,则参加次活动的团员志愿者有(6x+18)名,根据“参加的团员志愿者不足50人,每辆车坐10人,那么其余的车坐满后,仅有一辆车不空也不满”,即可得出关于x的一元一次不等式组,解之取其正整数值即可得出结论.【解答】解:设联系“小白”车x辆,则参加次活动的团员志愿者有(6x+18)名,依题意,得:,解得:<x<.∵x为正整数,∴x=5,∴6x+18=48.故选:B.21.将一箱苹果分给若干个小朋友,若每位小朋友分5个苹果,则还剩12个苹果;若每位小朋友分8个苹果,则有一个小朋友分到苹果但不到8个苹果.求这一箱苹果的个数与小朋友的人数.若设有x人,则可列不等式组为( )A.8(x﹣1)<5x+12<8 B.0<5x+12<8x C.0<5x+12﹣8(x﹣1)<8 D.8x<5x+12<8【分析】设有x人,由于每位小朋友分5个苹果,则还剩12个苹果,则苹果有(5x+12)个;若每位小朋友分8个苹果,则有一个小朋友分不到8个苹果,就是苹果数5x+12﹣8(x﹣1)大于0,并且小于8,根据不等关系就可以列出不等式【解答】解:设有x人,则苹果有(5x+12)个,由题意得:0<5x+12﹣8(x﹣1)<8,故选:C.22.在“新冠肺炎”这场没有硝烟的战争中,各行各业都涌现出了一批“最美逆行者”,其中抗疫最前沿的就是护士.某医院安排护士若干名负责护理新冠病人,每名护士护理4名新冠病人,有20名新冠病人没人护理,如果每名护士护理8名新冠病人,有一名护士护理的新冠病人多于1人不足8人,这个医院安排了 名护士护理新冠病人.【分析】设医院安排了x名护士,由题意列出不等式组,则可得出答案.【解答】解:设医院安排了x名护士,由题意得,1<4x+20﹣8(x﹣1)<8,解得,5<x<6,∵x为整数,∴x=6.故答案为:6.23.把一些书分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本.这些书有多少本?学生有多少人?【分析】设有x个学生,根据“每人分3本,还余8本”用含x的代数式表示出书的本数;再根据“每人分5本,最后一人就分不到3本”列不等式.【解答】解:设有x个学生,那么共有(3x+8)本书,则:,解得5<x≤6.5,所以x=6,共有6×3+8=26本.答:有26本书,6个学生.类型七 “方案设计类”问题24.2020年7月27日,金华城东东湖畈地力提升项目现场,金色的早稻田一望无际.大型收割机依次排开,在田间来回穿梭,伴随着机器轰鸣的声音,金灿灿的稻谷被尽数收入“囊中”.已知1台大型收割机和3台小型收割机1小时可以收割1.4公顷,2台大型收割机和5台小型收割机1小时可以收割水稻2.5公顷.(1)每台大型收割机和小型收割机1小时可收割水稻多少公顷?(2)大型收割机每小时费用300元,小型收割机每小时费用为200元,两种型号的收割机一共10台,要求2小时完成8公顷水稻的收割任务,且总费用不超过5400元,有几种方案?请指出费用最低的一种方案,并求出相应的费用【分析】(1)设每台大型收割机1小时可收割水稻x公顷,每台小型收割机1小时可收割水稻y公顷,根据“1台大型收割机和3台小型收割机1小时可以收割1.4公顷,2台大型收割机和5台小型收割机1小时可以收割水稻2.5公顷”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设参加收割的大型收割机有m台,则小型收割机有(10﹣m)台,根据要求2小时完成8公顷水稻的收割任务且总费用不超过5400元,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,结合m为整数即可得出方案的个数,设总费用为w元,根据总费用=每台机器1小时所需费用×使用机器的数量×2,即可得出w关于m的函数关系式,再利用一次函数的性质即可解决最值问题.【解答】解:(1)设每台大型收割机1小时可收割水稻x公顷,每台小型收割机1小时可收割水稻y公顷,依题意得:,解得:.答:每台大型收割机1小时可收割水稻0.5公顷,每台小型收割机1小时可收割水稻0.3公顷.(2)设参加收割的大型收割机有m台,则小型收割机有(10﹣m)台,依题意得:,解得:5≤m≤7.又∵m为整数,∴m可以取5,6,7,∴共有3种方案.设总费用为w元,则w=2×[300m+200(10﹣m)]=200m+4000,∵200>0,∴当m=5时,w取得最小值,最小值=200×5+4000=5000(元),即当使用5台大型收割机、5台小型收割机时,总费用最低,最低费用为5000元.25.小华是花店的一名花艺师,她每天都要为花店制作普通花束和精致花束,她每月工作20天,每天工作8小时,她的工资由基本工资和提成工资两部分构成,每月的基本工资为1800元,另每制作一束普通花束可提2元,每制作一束精致花束可提5元.她制作两种花束的数量与所用时间的关系见下表:请根据以上信息,解答下列问题:(1)小华每制作一束普通花束和每制作一束精致花束分别需要多少分钟?(2)2019年11月花店老板要求小华本月制作普通花束的总时间x不少于3000分钟且不超过5000分钟,则小华该月收入W最多是多少元?此时小华本月制作普通花束和制作精致花束分别是多少束?【分析】(1)设小华每制作一束普通花束需要m分钟,每制作一束精致花束需要n分钟,根据小华制作两种花束的数量与所用时间的关系表,即可得出关于m,n的二元一次方程组,解之即可得出结论;(2)根据小华本月的总收入=基本工资+制作花束的数量×每束的提成,即可得出W关于x的函数关系式,再利用一次函数的性质即可解决最值问题.【解答】解:(1)设小华每制作一束普通花束需要m分钟,每制作一束精致花束需要n分钟,依题意,得:,解得:.答:小华每制作一束普通花束需要10分钟,每制作一束精致花束需要20分钟.(2)20×8×60=9600(分钟).依题意,得:W=1800+2×+5×=﹣+4200(3000≤x≤5000).∵﹣<0,∴W的值随x值的增大而减小,∴当x=3000时,W取得最大值,最大值为4050元.3000÷10=300(束),(9600﹣3000)÷20=330(束).答:小华该月收入W最多是4050元,此时小华本月制作普通花束300束,制作精致花束330束.26.某网红蛋糕店的蛋糕十分畅销,供不应求,主原料为鸡蛋和面粉,一份蛋糕含鸡蛋和面粉共390克,鸡蛋比面粉多90克,再添加不同的辅料,做成A、B、C三款蛋糕,毛利润分别为6元、9元、8元.(1)求一份蛋糕含鸡蛋、面粉各多少克?(2)若一天卖出500份蛋糕,A款与B款的份数之和比C款多60份,毛利润为3800元,求A款、B款、C款各卖了多少份?(3)若一天卖出n份蛋糕,A款与B款的份数之比为3:4,毛利润为4200元,且每款蛋糕的份数不少于145份,则n的最小值是(直接写出答案).【分析】(1)设一份蛋糕含鸡蛋x克,面粉y克,根据“一份蛋糕含鸡蛋和面粉共390克,鸡蛋比面粉多90克”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设A款蛋糕卖了a份,B款蛋糕卖了b份,C款蛋糕卖了c份,根据“三款蛋糕共卖出500份,A款与B款的份数之和比C款多60份,毛利润为3800元”,即可得出关于a,b,c的三元一次方程组,解之即可得出结论;(3)设卖出A款蛋糕3m份,则卖出B款蛋糕4m份,卖出C款蛋糕(n﹣7m)份,根据毛利润为4200元,即可得出关于m,n的二元一次方程,变形后可用含m的代数式表示出n值,结合每款蛋糕的份数不少于145份,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,结合3m,4m,(525+m)均为正整数,即可得出m的值,进而可得出n的值,取n的最小值即可得出结论.【解答】解:(1)设一份蛋糕含鸡蛋x克,面粉y克,依题意得:,解得:.答:一份蛋糕含鸡蛋240克,面粉150克.(2)设A款蛋糕卖了a份,B款蛋糕卖了b份,C款蛋糕卖了c份,依题意得:,解得:.答:A款蛋糕卖了160份,B款蛋糕卖了120份,C款蛋糕卖了220份.(3)设卖出A款蛋糕3m份,则卖出B款蛋糕4m份,卖出C款蛋糕(n﹣7m)份,依题意得:6×3m+9×4m+8(n﹣7m)=4200,∴n=525+m.又∵每款蛋糕的份数不少于145份,∴,即,解得:≤m≤,又∵3m,4m,(525+m)均为正整数,∴m可以为52,56,∴n的值为538或539.答:n的最小值为538.27.某手机经销商计划同时购进一批甲、乙两种型号手机,若购进2部甲型号手机和1部乙型号手机,共需要资金8400元;若购进3部甲型号手机和2部乙型号手机,共需要资金13800元.(1)求甲、乙型号手机每部进价各为多少元?(2)该店计划购进甲乙两种型号的手机销售,预计用不多于5.52万元且不少于5.28万元的资金购进这两种手机共20台,请问有几种进货方案?(3)若甲型号手机的售价为4500元,乙型号手机的售价为4200元,为了促销,无论采取哪种进货方案,公司决定每售出一台乙型号手机,返还顾客相同现金a元,而甲型号手机售价不变,要使(2)中所有方案获利相同,求a的值.【分析】(1)设甲型号手机每部进价为x元,乙型号手机每部进价为y元,根据“若购进2部甲型号手机和1部乙型号手机,共需要资金8400元;若购进3部甲型号手机和2部乙型号手机,共需要资金13800元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购进甲型号手机m部,则购进乙型号手机(20﹣m)部,根据总价=单价×数量结合总价不多于5.52万元且不少于5.28万元,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m的整数即可得出进货方案的数量;(3)设获得的利润为w元,根据总利润=单部利润×数量,即可得出w关于m的函数关系式,由w的值与m无关,即可求出a值.【解答】解:(1)设甲型号手机每部进价为x元,乙型号手机每部进价为y元,依题意,得:,解得:.答:甲型号手机每部进价为3000元,乙型号手机每部进价为2400元.(2)设购进甲型号手机m部,则购进乙型号手机(20﹣m)部,依题意,得:,解得:8≤m≤12,∵m为整数,∴m=8,9,10,11,12,∴共有5种进货方案.(3)设获得的利润为w元,依题意,得:w=(4500﹣3000)m+(4200﹣2400﹣a)(20﹣m)=(a﹣300)m+36000﹣20a,∵w的值与m无关,∴a﹣300=0,解得:a=300.答:a的值为300.28.在利川市开展“六城同创”城乡综合治理的活动中,需要将A、B、C三地的垃圾50立方米、40立方米、50立方米全部运往垃圾处理场D、E两地进行处理.已知运往D地的数量比运往E地的数量的2倍少10立方米.(1)求运往两地的数量各是多少立方米?(2)若A地运往D地a立方米(a为整数),B地运往D地30立方米,C地运往D地的数量小于A地运往D地的2倍.其余全部运往E地,且C地运往E地不超过12立方米,则A、C两地运往D、E两地哪几种方案?(3)已知从A、B、C三地把垃圾运往D、E两地处理所需费用如表:在(2)的条件下,请说明哪种方案的总费用最少?【分析】(1)设运往E地x立方米,由题意可列出关于x的方程,求出x的值即可;(2)根据C地运往D地的数量小于A地运往D地的2倍,其余全部运往E地,且C地运往E地不超过12立方米列出关于a的一元一次不等式组,求出a的取值范围,再根据a是整数可得出a的值,进而可求出答案;(3)根据(2)中的两种方案分别求出其费用,比较即可.【解答】解:(1)设运往E地x立方米,由题意得,x+2x﹣10=140,解得:x=50,则2x﹣10=90.答:共运往D地90立方米,运往E地50立方米;(2)由题意可得,,解得:20<a≤22,∵a是整数,∴a=21或22,∴有如下两种方案:第一种:A地运往D地21立方米,运往E地29立方米;C地运往D地39立方米,运往E地11立方米;第二种:A地运往D地22立方米,运往E地28立方米;C地运往D地38立方米,运往E地12立方米;(3)第一种方案共需费用:22×21+20×29+30×20+22×10+39×20+11×21=2873(元),第二种方案共需费用:22×22+28×20+30×20+22×10+38×20+12×21=2876(元),所以,第一种方案的总费用最少.29.某工厂用如图甲所示的长方形和正方形纸板,做成如图乙所示的竖式与横式两种长方体形状的无盖的纸盒.(1)现有正方形纸板162张,长方形纸板340张,若要做两种纸盒共100个,设竖式纸盒x个,需要长方形纸板 张,正方形纸板 张(请用含有x的式子表示);(2)在(1)的条件下,有哪几种生产方案?(3)若有正方形纸板162张,长方形纸板a张,做成上述两种纸盒,纸板恰好用完.已知290<a<300,求a的值.【分析】(1)设生产竖式纸盒x个,则生产横式纸盒(100﹣x)个,根据每个长方形、正方形纸板使用长方形、正方形纸板的数量,即可得出结论;(2)根据使用正方形纸板不超过162张、长方形纸板不超过340张,即可得出关于x的一元一次不等式组,解之即可得出x的取值范围,结合x为整数,即可得出各生产方案;(3)设可以生产竖式纸盒m个,横式纸盒个,得出a关于m的函数关系式,结合290<a<300,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,结合m为整数即可得出结论.【解答】解:(1)设生产竖式纸盒x个,则生产横式纸盒(100﹣x)个,∴长方形纸板用了(x+300)张,正方形纸板用了(200﹣x)张.故答案为:(x+300),(200﹣x);(2)依题意得:,解得38≤x≤40.∵x为整数,∴x=38,39,40,∴共有3种生产方案,方案1:生产竖式纸盒38个,横式纸盒62个;方案2:生产竖式纸盒39个,横式纸盒61个;方案3:生产竖式纸盒40个,横式纸盒60个;(3)设可以生产竖式纸盒m个,横式纸盒个,依题意得:a=4m+=m+243.∵290<a<300,∴,解得18.8<m<22.8,∵m为正整数,∴m=20,22,∴a=293,298.答:a的值为293或298.好学善思的小明和小亮同学阅读数学课外书时,看到这样一道题:解关于x的不等式:>0两位同学认为这道题虽然没学过,但是可以用已学的知识解决.小明的方法:根据“两数相除,同号得正”,可以将原不等式转化为或解得……小亮的方法:将原不等式两边同时乘以(3x﹣2),得x+1>0,解得……制作普通花束(束)制作精致花束(束)所用时间(分钟)10256001530750A地B地C地运往D地(元/立方米)222020运往E地(元/立方米)202221
第13讲 一元一次不等式(组)常见题型分类总复习类型一 “程序”类问题1.运行程序如图所示,规定:从“输入一个值x”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x的取值范围是( )A.12.75<x≤24.5 B.x<24.5 C.12.75≤x<24.5 D.x≤24.5【分析】根据运算程序,前两次运算结果小于等于95,第三次运算结果大于95列出不等式组,然后求解即可.【解答】解:由题意得:,解不等式①得,x≤48,解不等式②得,x≤24.5,解不等式③得,x>12.75,所以,x的取值范围是12.75<x≤24.5.故选:A.如图所示的是一个运算程序: 例如:根据所给的运算程序可知:当x=10时,5×10+2=52>37,则输出的值为52;当x=5时,5×5+2=27<37,再把x=27代入,得5×27+2=137>37,则输出的值为137.若数x需要经过三次运算才能输出结果,则x的取值范围是( )A.x<7 B.﹣≤x<7 C.﹣≤x<1 D.x<﹣或x>7【分析】根据该程序运行三次才能输出结果,即可得出关于x的一元一次不等式组,解之即可得出结论.【解答】解:依题意得:,解得:﹣≤x<1.故选:C.3.如图是一个运行程序,从“输入整数x”到“结果是否>19”为一次操作程序,若输入x后程序操作仅进行了二次就停止,则输入整数x的值可能是( )A.7 B.7或9 C.9或11 D.13【分析】根据程序操作仅进行了二次就停止,即可得出关于x的一元一次不等式组,解之即可得出x的取值范围,再对照四个选项即可找出可能输入的整数值.【解答】解:依题意得:,解得:7<x≤11.又∵x为整数,∴x可以为8,9,10,11,故选:C.4.按下面程序计算,若开始输入x的值为正数,最后输出的结果为656,则满足条件所有x的值是 .【分析】利用逆向思维来做,分析第一个数就是直接输出656,可得方程5x+1=656,解方程即可求得第一个数,再求得输出为这个数的第二个数,以此类推即可求得所有答案.【解答】解:我们用逆向思维来做:第一个数就是直接输出其结果的:5x+1=656,解得:x=131;第二个数是(5x+1)×5+1=656,解得:x=26;同理:可求出第三个数是5;第四个数是,∴满足条件所有x的值是131或26或5或.故答案为:131或26或5或.类型二 “字母系数”类问题5.根据不等式的基本性质,可将“mx<2”化为“x”,则m的取值范围是 .【分析】利用不等式的基本性质求出m的范围即可.【解答】解:∵根据不等式的基本性质,可将“mx<2”化为“x”,∴m<0,故答案为:m<06.解关于x的不等式 ax﹣x﹣2>0.解:移项、合并同类项,得 (a﹣1)x>2.当 a﹣1>0,即 a>1 时,不等式的解集为;当 a﹣1=0,即a=1时,0>2 不成立,所以原 不等式无解;当 a﹣1<0,即 a<1 时,不等式的解集为x<.【解决问题】(1)解关于x的不等式 ax﹣x﹣2<0;(2)若关于x的不等式 a(x﹣1)>x+1﹣2a 的解集是 x<﹣1,求a的取值范围.【分析】(1)由ax﹣x﹣2<0知(a﹣1)x<2,再分a﹣1>0、a﹣1=0和a﹣1<0三种情况分别求解即可;(2)原不等式依次去括号、移项、合并同类项得出(a﹣1)x>﹣(a﹣1),结合不等式的解集为x<﹣1得出关于a的不等式,解之即可.【解答】解:(1)∵ax﹣x﹣2<0,∴(a﹣1)x<2,当a﹣1>0,即a>1时,x<;当a﹣1=0,即a=1时,0<2恒成立,不等式的解集为全体实数;当a﹣1<0,即a<1时,x>;(2)∵a(x﹣1)>x+1﹣2a,∴ax﹣a>x+1﹣2a,∴ax﹣x>1﹣a,则(a﹣1)x>﹣(a﹣1),∵不等式的解集为x<﹣1,∴a﹣1<0,解得a<1.类型三 “双向不等式”类问题7.解下列双向不等式【分析】双向不等式其实就是不等式组,当只有中间有未知数时,可以直接解答,不需要拆分成不等式组;但是当两边或者三边都有未知数时,通常转化为普通一元一次不等式组来求解【解答】解:①∵;②原不等式可转化为;解不等式①得:;解不等式②得:;∴该不等式的解集为:类型四 “新定义”类问题8.新定义:对非负数x“四舍五入”到个位的值记为(x).即当n为非负整数时,若,则(x)=n.如(0.46)=0,(3.67)=4.下列结论:①(2.493)=2;②(3x)=3(x);③若,则x的取值范围是6≤x<10;④当x≥0,m为非负整数时,有(m+2022x)=m+(2022x);其中正确的是 (填写所有正确的序号).【分析】对于①可直接判断,②可用举反例法判断,③、④我们可以根据题意所述利用不等式判断.【解答】解:①(2.493)=2,故①符合题意;②(3x)≠3(x),例如当x=0.3时,(3x)=1,3(x)=0,故②不符合题意;③若(x﹣1)=1,则,解得:6≤x<10,故③符合题意;④m为非负整数,故(m+2020x)=m+(2020x),故④符合题意;综上可得①③④正确.故答案为:①③④.9.我们定义:如果两个一元一次不等式有公共解,那么称这两个不等式互为“云不等式”,其中一个不等式是另一个不等式的“云不等式”.(1)在不等式①2x﹣1<0,②x≤2,③x﹣(3x﹣1)<﹣5中,不等式x≥2的“云不等式”是 ;(填序号)(2)若关于x的不等式x+2m≥0不是2x﹣3<x+m的“云不等式”,求m的取值范围;(3)若a≠﹣1,关于x的不等式x+3≥a与不等式ax﹣1<a﹣x互为“云不等式”,求a的取值范围.【分析】(1)根据云不等式的定义即可求解;(2)解不等式x+2m≥0可得x≥﹣2m,解不等式2x﹣3<x+m得x<m+3,再根据云不等式的定义可得﹣2m>m+3,解不等式即可求解;(3)分两种情况讨论根据云不等式的定义得到含a的不等式,解得即可.【解答】解:(1)不等式2x﹣1<0和不等式x≥2没有公共解,故①不是不等式x≥2的“云不等式”;不等式x≤2和不等式x≥2有公共解,故②是不等式x≥2的“云不等式”;不等式x﹣(3x﹣1)<﹣5和不等式x≥2有公共解,故③是不等式x≥2的“云不等式”;故答案为:②③;(2)解不等式x+2m≥0可得x≥﹣2m,解不等式2x﹣3<x+m得x<m+3,∵关于x的不等式x+2m≥0不是2x﹣3<x+m的“云不等式”,∴﹣2m≥m+3,解得m≤﹣1,故m的取值范围是m≤﹣1;(3)①当a+1>0时,即a>﹣1时,依题意有a﹣3<1,即a<4,故﹣1<a<4;②当a+1<0时,即a<﹣1时,始终符合题意,故a<﹣1;综上,a的取值范围为a<﹣1或﹣1<a<4.10.设x为实数,我们用{x}表示不小于x的最小整数,如:{3.2}=4,{﹣2}=﹣2.在此规定下,任一实数都能写成x={x}﹣a的形式.(1)若﹣1.2={﹣1.2}﹣a,则a= ;(2)直接写出{x}、x与x+1这三者的大小关系: ;(3)满足{2x+5}=4的x的取值范围是 ;满足{2.5x﹣3}=4x﹣的x的取值是 .【分析】(1)利用{x}表示不小于x的最小整数,可得方程﹣1.2=﹣1﹣a,解方程即可求解;(2)利用x={x}﹣b,其中0≤b<1得出0≤{x}<x+1,进而得出答案;(3)利用(2)中所求得出2x+5≤4<2x+5+1,进而得出即可;利用(2)中所求得出2.5x﹣3≤4x﹣<(2.5x﹣3)+1,进而得出即可.【解答】解:(1)∵﹣1.2={﹣1.2}﹣a,∴﹣1.2=﹣1﹣a,解得a=0.2;(2)x≤{x}<x+1,理由:∵x={x}﹣b,其中0≤b<1,∴b={x}﹣x,∴0≤{x}<x+1,∴x≤{x}<x+1;(3)依题意有2x+5≤4<2x+5+1,解得:﹣1<x≤﹣;依据题意有2.5x﹣3≤4x﹣<(2.5x﹣3)+1且4x﹣为整数,解得:﹣≤x<﹣,∴﹣≤4x﹣<﹣,∴整数4x﹣为﹣6,﹣5,解得:x=﹣或x=﹣.故答案为:0.2;x≤{x}<x+1;﹣1<x≤﹣,﹣或﹣.11.阅读与思考请仔细阅读材料,并完成相应任务.任务一:你认为小明和小亮的方法正确吗?若正确请补充完整解题过程;若不正确,请说明理由.任务二:请尝试利用已学知识解关于x的不等式:<2.【分析】根据两数相除,同号得正,分类讨论求出不等式的解集即可.【解答】解:任务一:小明的方法正确,根据“两数相除,同号得正”,可以将原不等式转化为或,解得x>或x<﹣1;小亮的方法错误;不符合不等式的性质.任务二:<2,整理得﹣2<0,即>0,根据“两数相除,同号得正”,可以将原不等式转化为或,解得x>﹣3或x<﹣8.类型五 “含字母参数”类不等式解的问题12.已知不等式2(x+3)﹣5x+a>0的解集中恰有3个非负整数,则a的取值范围为( )A.2<a≤3 B.2≤a<3 C.0<a≤3 D.0≤a<3【分析】先求出不等式的解集,再根据其非负整数解列出不等式,解此不等式即可.【解答】解:解不等式2(x+3)﹣5x+a>0得到:x<a+2,∵不等式2(x+3)﹣5x+a>0的解集中恰有3个非负整数,∴3个非负整数解是0,1,2,∴2<a+2≤3,解得0<a≤3.故选:C.13.下面说法错误的个数有( )①若m>n,则ma2>na2;②如果>,那么a>b;③x>4是不等式x+3≥6的解的一部分;④不等式两边乘(或除以)同一个数,不等号的方向不变;⑤不等式x+3<3的整数解是0.A.1个 B.2个 C.3个 D.4个【分析】利用不等式的基本性质,解集与解的定义判断即可.【解答】解:①若m>n且a≠0,则ma2>na2,故错误,符合题意;②如果>,那么a>b,故正确,不符合题意;③∵不等式x+3≥6的解集为x≥3,∴x>4是不等式x+3≥6的解的一部分,故正确,不合题意;④不等式两边乘(或除以)同一个正数,不等号的方向不变,故错误,符合题意;⑤∵不等式x+3<3的解集为x<0,故错误,符合题意.故选:C.14.关于x的不等式3x﹣m+2>0的最小整数解为2,则实数m的取值范围是( )A.5≤m<8 B.5<m<8 C.5≤m≤8 D.5<m≤8【分析】解出不等式,然后根据不等式的最小整数解为2,即可列出关于m的不等式,从而求出m的取值范围.【解答】解:3x﹣m+2>0,3x>m﹣2,,∵不等式的最小整数解为2,∴,解得:5≤m<8,故选:A.15.已知关于x的不等式组恰有4个整数解,则m的取值范围为( )A.<m< B.≤m< C.<m≤ D.≤m≤【分析】根据关于x的不等式组的解集和整数解的个数确定关于m的不等式组,再求出解集即可.【解答】解:关于x的不等式组有解,其解集为8<x≤4m﹣2,∵关于x的不等式组恰有4个整数解,∴12≤4m﹣2<13,解得≤m<,故选:B.16.已知关于x的不等式组的所有整数解的和为﹣5,则m的取值范围为( )A.﹣6<m≤﹣3或3<m≤6 B.﹣6≤m<﹣3或3≤m<6 C.﹣6≤m<﹣3 D.﹣6<m≤﹣3【分析】分别求出每一个不等式的解集,根据不等式组的整数解的情况列出关于m的不等式,解之即可.【解答】解:由3x﹣m<0,得:x<,又x>﹣4,且不等式组所有整数解的和为﹣5,∴不等式组的整数解为﹣3、﹣2或﹣3、﹣2、﹣1、0、1,∴﹣2<≤﹣1或1<≤2,解得﹣6<m≤﹣3或3<m≤6,故选:A.17.若实数m使得关于x的不等式组无解,则关于y的分式方程的最小整数解是 .【分析】先求出每个不等式的解集,然后根据不等式组无解求出m的取值范围,再解分式方程,从而确定y的取值范围,即可得到答案.【解答】解:解不等式2x>2得:x>1,解不等式3x<m+1得:,∵不等式组无解,∴,解得m≤2;,去分母得2y=4﹣m,解得,∵m≤2,∴4﹣m≥2,∴,又∵y﹣1≠0,∴y>1,∴y的最小整数解为2,故答案为:2.18.若关于x的不等式组有解,且关于x的方程kx=2(x﹣2)﹣(3x+2)有非负整数解,则符合条件的所有整数k的和为 .【分析】先根据不等式组有解得k的取值,利用方程有非负整数解,将k的取值代入,找出符合条件的k值,并相加.【解答】解:,解①得:x≥4k+1,解②得:x<5k+5,关于x的不等式组有解,∴5k+5>4k+1,∴k>﹣4,解关于x的方程kx=2(x﹣2)﹣(3x+2)得,x=﹣,因为关于x的方程kx=2(x﹣2)﹣(3x+2)有非负整数解,当k=﹣3时,x=3当k=﹣2时,x=6,∴﹣2﹣3=﹣5;故答案为:﹣5.类型六 “分配”问题19.有一家人参加登山活动,他们要将矿泉水分装在旅行包内带上山.若每人带2瓶,则剩余3瓶;若每人带3瓶,则有一人带了矿泉水,但不足2瓶,则这家参加登山的人数为( )A.4人 B.5人 C.3人 D.5人或6人【分析】设这家参加登山的人数为x人,则矿泉水有(2x+3)瓶,根据题意列出不等式组,再解即可.【解答】解:设这家参加登山的人数为x人,则矿泉水有(2x+3)瓶,由题意得:,解得:4<x<6,∵x为整数,∴x=5,故选:B.20.我校团委组织团员志愿者在重阳节乘车前往敬老院慰问孤寡老人,参加的团员志愿者不足50人,联系“小白”车若干辆,每辆车如果坐6人,就剩下18人无车可坐;每辆车坐10人,那么其余的车坐满后,仅有一辆车不空也不满.则参加次活动的团员志愿者有( )名.A.54 B.48 C.46 D.45【分析】设联系“小白”车x辆,则参加次活动的团员志愿者有(6x+18)名,根据“参加的团员志愿者不足50人,每辆车坐10人,那么其余的车坐满后,仅有一辆车不空也不满”,即可得出关于x的一元一次不等式组,解之取其正整数值即可得出结论.【解答】解:设联系“小白”车x辆,则参加次活动的团员志愿者有(6x+18)名,依题意,得:,解得:<x<.∵x为正整数,∴x=5,∴6x+18=48.故选:B.21.将一箱苹果分给若干个小朋友,若每位小朋友分5个苹果,则还剩12个苹果;若每位小朋友分8个苹果,则有一个小朋友分到苹果但不到8个苹果.求这一箱苹果的个数与小朋友的人数.若设有x人,则可列不等式组为( )A.8(x﹣1)<5x+12<8 B.0<5x+12<8x C.0<5x+12﹣8(x﹣1)<8 D.8x<5x+12<8【分析】设有x人,由于每位小朋友分5个苹果,则还剩12个苹果,则苹果有(5x+12)个;若每位小朋友分8个苹果,则有一个小朋友分不到8个苹果,就是苹果数5x+12﹣8(x﹣1)大于0,并且小于8,根据不等关系就可以列出不等式【解答】解:设有x人,则苹果有(5x+12)个,由题意得:0<5x+12﹣8(x﹣1)<8,故选:C.22.在“新冠肺炎”这场没有硝烟的战争中,各行各业都涌现出了一批“最美逆行者”,其中抗疫最前沿的就是护士.某医院安排护士若干名负责护理新冠病人,每名护士护理4名新冠病人,有20名新冠病人没人护理,如果每名护士护理8名新冠病人,有一名护士护理的新冠病人多于1人不足8人,这个医院安排了 名护士护理新冠病人.【分析】设医院安排了x名护士,由题意列出不等式组,则可得出答案.【解答】解:设医院安排了x名护士,由题意得,1<4x+20﹣8(x﹣1)<8,解得,5<x<6,∵x为整数,∴x=6.故答案为:6.23.把一些书分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本.这些书有多少本?学生有多少人?【分析】设有x个学生,根据“每人分3本,还余8本”用含x的代数式表示出书的本数;再根据“每人分5本,最后一人就分不到3本”列不等式.【解答】解:设有x个学生,那么共有(3x+8)本书,则:,解得5<x≤6.5,所以x=6,共有6×3+8=26本.答:有26本书,6个学生.类型七 “方案设计类”问题24.2020年7月27日,金华城东东湖畈地力提升项目现场,金色的早稻田一望无际.大型收割机依次排开,在田间来回穿梭,伴随着机器轰鸣的声音,金灿灿的稻谷被尽数收入“囊中”.已知1台大型收割机和3台小型收割机1小时可以收割1.4公顷,2台大型收割机和5台小型收割机1小时可以收割水稻2.5公顷.(1)每台大型收割机和小型收割机1小时可收割水稻多少公顷?(2)大型收割机每小时费用300元,小型收割机每小时费用为200元,两种型号的收割机一共10台,要求2小时完成8公顷水稻的收割任务,且总费用不超过5400元,有几种方案?请指出费用最低的一种方案,并求出相应的费用【分析】(1)设每台大型收割机1小时可收割水稻x公顷,每台小型收割机1小时可收割水稻y公顷,根据“1台大型收割机和3台小型收割机1小时可以收割1.4公顷,2台大型收割机和5台小型收割机1小时可以收割水稻2.5公顷”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设参加收割的大型收割机有m台,则小型收割机有(10﹣m)台,根据要求2小时完成8公顷水稻的收割任务且总费用不超过5400元,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,结合m为整数即可得出方案的个数,设总费用为w元,根据总费用=每台机器1小时所需费用×使用机器的数量×2,即可得出w关于m的函数关系式,再利用一次函数的性质即可解决最值问题.【解答】解:(1)设每台大型收割机1小时可收割水稻x公顷,每台小型收割机1小时可收割水稻y公顷,依题意得:,解得:.答:每台大型收割机1小时可收割水稻0.5公顷,每台小型收割机1小时可收割水稻0.3公顷.(2)设参加收割的大型收割机有m台,则小型收割机有(10﹣m)台,依题意得:,解得:5≤m≤7.又∵m为整数,∴m可以取5,6,7,∴共有3种方案.设总费用为w元,则w=2×[300m+200(10﹣m)]=200m+4000,∵200>0,∴当m=5时,w取得最小值,最小值=200×5+4000=5000(元),即当使用5台大型收割机、5台小型收割机时,总费用最低,最低费用为5000元.25.小华是花店的一名花艺师,她每天都要为花店制作普通花束和精致花束,她每月工作20天,每天工作8小时,她的工资由基本工资和提成工资两部分构成,每月的基本工资为1800元,另每制作一束普通花束可提2元,每制作一束精致花束可提5元.她制作两种花束的数量与所用时间的关系见下表:请根据以上信息,解答下列问题:(1)小华每制作一束普通花束和每制作一束精致花束分别需要多少分钟?(2)2019年11月花店老板要求小华本月制作普通花束的总时间x不少于3000分钟且不超过5000分钟,则小华该月收入W最多是多少元?此时小华本月制作普通花束和制作精致花束分别是多少束?【分析】(1)设小华每制作一束普通花束需要m分钟,每制作一束精致花束需要n分钟,根据小华制作两种花束的数量与所用时间的关系表,即可得出关于m,n的二元一次方程组,解之即可得出结论;(2)根据小华本月的总收入=基本工资+制作花束的数量×每束的提成,即可得出W关于x的函数关系式,再利用一次函数的性质即可解决最值问题.【解答】解:(1)设小华每制作一束普通花束需要m分钟,每制作一束精致花束需要n分钟,依题意,得:,解得:.答:小华每制作一束普通花束需要10分钟,每制作一束精致花束需要20分钟.(2)20×8×60=9600(分钟).依题意,得:W=1800+2×+5×=﹣+4200(3000≤x≤5000).∵﹣<0,∴W的值随x值的增大而减小,∴当x=3000时,W取得最大值,最大值为4050元.3000÷10=300(束),(9600﹣3000)÷20=330(束).答:小华该月收入W最多是4050元,此时小华本月制作普通花束300束,制作精致花束330束.26.某网红蛋糕店的蛋糕十分畅销,供不应求,主原料为鸡蛋和面粉,一份蛋糕含鸡蛋和面粉共390克,鸡蛋比面粉多90克,再添加不同的辅料,做成A、B、C三款蛋糕,毛利润分别为6元、9元、8元.(1)求一份蛋糕含鸡蛋、面粉各多少克?(2)若一天卖出500份蛋糕,A款与B款的份数之和比C款多60份,毛利润为3800元,求A款、B款、C款各卖了多少份?(3)若一天卖出n份蛋糕,A款与B款的份数之比为3:4,毛利润为4200元,且每款蛋糕的份数不少于145份,则n的最小值是(直接写出答案).【分析】(1)设一份蛋糕含鸡蛋x克,面粉y克,根据“一份蛋糕含鸡蛋和面粉共390克,鸡蛋比面粉多90克”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设A款蛋糕卖了a份,B款蛋糕卖了b份,C款蛋糕卖了c份,根据“三款蛋糕共卖出500份,A款与B款的份数之和比C款多60份,毛利润为3800元”,即可得出关于a,b,c的三元一次方程组,解之即可得出结论;(3)设卖出A款蛋糕3m份,则卖出B款蛋糕4m份,卖出C款蛋糕(n﹣7m)份,根据毛利润为4200元,即可得出关于m,n的二元一次方程,变形后可用含m的代数式表示出n值,结合每款蛋糕的份数不少于145份,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,结合3m,4m,(525+m)均为正整数,即可得出m的值,进而可得出n的值,取n的最小值即可得出结论.【解答】解:(1)设一份蛋糕含鸡蛋x克,面粉y克,依题意得:,解得:.答:一份蛋糕含鸡蛋240克,面粉150克.(2)设A款蛋糕卖了a份,B款蛋糕卖了b份,C款蛋糕卖了c份,依题意得:,解得:.答:A款蛋糕卖了160份,B款蛋糕卖了120份,C款蛋糕卖了220份.(3)设卖出A款蛋糕3m份,则卖出B款蛋糕4m份,卖出C款蛋糕(n﹣7m)份,依题意得:6×3m+9×4m+8(n﹣7m)=4200,∴n=525+m.又∵每款蛋糕的份数不少于145份,∴,即,解得:≤m≤,又∵3m,4m,(525+m)均为正整数,∴m可以为52,56,∴n的值为538或539.答:n的最小值为538.27.某手机经销商计划同时购进一批甲、乙两种型号手机,若购进2部甲型号手机和1部乙型号手机,共需要资金8400元;若购进3部甲型号手机和2部乙型号手机,共需要资金13800元.(1)求甲、乙型号手机每部进价各为多少元?(2)该店计划购进甲乙两种型号的手机销售,预计用不多于5.52万元且不少于5.28万元的资金购进这两种手机共20台,请问有几种进货方案?(3)若甲型号手机的售价为4500元,乙型号手机的售价为4200元,为了促销,无论采取哪种进货方案,公司决定每售出一台乙型号手机,返还顾客相同现金a元,而甲型号手机售价不变,要使(2)中所有方案获利相同,求a的值.【分析】(1)设甲型号手机每部进价为x元,乙型号手机每部进价为y元,根据“若购进2部甲型号手机和1部乙型号手机,共需要资金8400元;若购进3部甲型号手机和2部乙型号手机,共需要资金13800元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购进甲型号手机m部,则购进乙型号手机(20﹣m)部,根据总价=单价×数量结合总价不多于5.52万元且不少于5.28万元,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m的整数即可得出进货方案的数量;(3)设获得的利润为w元,根据总利润=单部利润×数量,即可得出w关于m的函数关系式,由w的值与m无关,即可求出a值.【解答】解:(1)设甲型号手机每部进价为x元,乙型号手机每部进价为y元,依题意,得:,解得:.答:甲型号手机每部进价为3000元,乙型号手机每部进价为2400元.(2)设购进甲型号手机m部,则购进乙型号手机(20﹣m)部,依题意,得:,解得:8≤m≤12,∵m为整数,∴m=8,9,10,11,12,∴共有5种进货方案.(3)设获得的利润为w元,依题意,得:w=(4500﹣3000)m+(4200﹣2400﹣a)(20﹣m)=(a﹣300)m+36000﹣20a,∵w的值与m无关,∴a﹣300=0,解得:a=300.答:a的值为300.28.在利川市开展“六城同创”城乡综合治理的活动中,需要将A、B、C三地的垃圾50立方米、40立方米、50立方米全部运往垃圾处理场D、E两地进行处理.已知运往D地的数量比运往E地的数量的2倍少10立方米.(1)求运往两地的数量各是多少立方米?(2)若A地运往D地a立方米(a为整数),B地运往D地30立方米,C地运往D地的数量小于A地运往D地的2倍.其余全部运往E地,且C地运往E地不超过12立方米,则A、C两地运往D、E两地哪几种方案?(3)已知从A、B、C三地把垃圾运往D、E两地处理所需费用如表:在(2)的条件下,请说明哪种方案的总费用最少?【分析】(1)设运往E地x立方米,由题意可列出关于x的方程,求出x的值即可;(2)根据C地运往D地的数量小于A地运往D地的2倍,其余全部运往E地,且C地运往E地不超过12立方米列出关于a的一元一次不等式组,求出a的取值范围,再根据a是整数可得出a的值,进而可求出答案;(3)根据(2)中的两种方案分别求出其费用,比较即可.【解答】解:(1)设运往E地x立方米,由题意得,x+2x﹣10=140,解得:x=50,则2x﹣10=90.答:共运往D地90立方米,运往E地50立方米;(2)由题意可得,,解得:20<a≤22,∵a是整数,∴a=21或22,∴有如下两种方案:第一种:A地运往D地21立方米,运往E地29立方米;C地运往D地39立方米,运往E地11立方米;第二种:A地运往D地22立方米,运往E地28立方米;C地运往D地38立方米,运往E地12立方米;(3)第一种方案共需费用:22×21+20×29+30×20+22×10+39×20+11×21=2873(元),第二种方案共需费用:22×22+28×20+30×20+22×10+38×20+12×21=2876(元),所以,第一种方案的总费用最少.29.某工厂用如图甲所示的长方形和正方形纸板,做成如图乙所示的竖式与横式两种长方体形状的无盖的纸盒.(1)现有正方形纸板162张,长方形纸板340张,若要做两种纸盒共100个,设竖式纸盒x个,需要长方形纸板 张,正方形纸板 张(请用含有x的式子表示);(2)在(1)的条件下,有哪几种生产方案?(3)若有正方形纸板162张,长方形纸板a张,做成上述两种纸盒,纸板恰好用完.已知290<a<300,求a的值.【分析】(1)设生产竖式纸盒x个,则生产横式纸盒(100﹣x)个,根据每个长方形、正方形纸板使用长方形、正方形纸板的数量,即可得出结论;(2)根据使用正方形纸板不超过162张、长方形纸板不超过340张,即可得出关于x的一元一次不等式组,解之即可得出x的取值范围,结合x为整数,即可得出各生产方案;(3)设可以生产竖式纸盒m个,横式纸盒个,得出a关于m的函数关系式,结合290<a<300,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,结合m为整数即可得出结论.【解答】解:(1)设生产竖式纸盒x个,则生产横式纸盒(100﹣x)个,∴长方形纸板用了(x+300)张,正方形纸板用了(200﹣x)张.故答案为:(x+300),(200﹣x);(2)依题意得:,解得38≤x≤40.∵x为整数,∴x=38,39,40,∴共有3种生产方案,方案1:生产竖式纸盒38个,横式纸盒62个;方案2:生产竖式纸盒39个,横式纸盒61个;方案3:生产竖式纸盒40个,横式纸盒60个;(3)设可以生产竖式纸盒m个,横式纸盒个,依题意得:a=4m+=m+243.∵290<a<300,∴,解得18.8<m<22.8,∵m为正整数,∴m=20,22,∴a=293,298.答:a的值为293或298.好学善思的小明和小亮同学阅读数学课外书时,看到这样一道题:解关于x的不等式:>0两位同学认为这道题虽然没学过,但是可以用已学的知识解决.小明的方法:根据“两数相除,同号得正”,可以将原不等式转化为或解得……小亮的方法:将原不等式两边同时乘以(3x﹣2),得x+1>0,解得……制作普通花束(束)制作精致花束(束)所用时间(分钟)10256001530750A地B地C地运往D地(元/立方米)222020运往E地(元/立方米)202221
相关资料
更多