河南省信阳市罗山县2022-2023学年八年级上学期期末模拟测试数学试卷(含解析)
展开
这是一份河南省信阳市罗山县2022-2023学年八年级上学期期末模拟测试数学试卷(含解析),共17页。试卷主要包含了选择题等内容,欢迎下载使用。
1. “新冠病毒”肆虐,全国上下齐心协力、众志成城,坚决打赢“新冠肺炎”阻击战,下列防疫的图标中是轴对称图形的是( )
A. B. C. D.
2. 刘零想做一个三角形的框架,她有两根长度分别为6cm和8cm的细木条,需要将其中一根木条分为两段,如果不考虑损耗和接头部分,那么可以分成两段的是( )
A. 6cm的木条B. 8cm的木条C. 两根都可以D. 两根都不行
3. 下列运算正确是( )
A. B. C. D.
4. 如图,AB=AC,BD⊥AC于D,CE⊥AB于E.BD与CE交于O,连接AO,则图中共有全等的三角形的对数为( )
A. 1对B. 2对C. 3对D. 4对
5. 一副三角板按如图所示叠放在一起,则图中的度数为( )
A. B. C. D.
6. 现有两根木棒,它们的长是20cm和30cm,若要钉成一个三角形木架,则应选取的第三根木棒长为( )
A. 10cmB. 50cmC. 60cmD. 40cm
7. 如图,在长方形ABCD中,连接AC,以A为圆心,适当长为半径画弧,分别交AD,AC于点E,F,分别以E,F为圆心,大于的长为半径画弧,两弧在内交于点H,画射线AH交DC于点M.若,则的大小为( )
A. B. C. D.
8. 如图,AB∥CD,FE⊥DB,垂足为E,∠1=50°,则∠2的度数是( )
A. 60°B. 50°C. 40°D. 30°
9. 下列多项式不能用公式法进行因式分解的是( )
A. 1 a2B.
C. x2 2xy y2D. 4x2 4x 1
10. 如图,若x为正整数,则表示分式的值落在( )
A. 线①处B. 线②处C. 线③处D. 线④处
二.填空题(共5题,总计 15分)
11. 计算:(﹣2a2)3的结果是_____.
12. 如图,∠B=∠C,要使△ABD≌△ACE,只需增加的一个条件是________(只需填写一个你认为适合的条件).
13. 如图,点是的平分线上一点,于点.已知,则点到的距离是______.
14. 将等边三角形、正方形、正五边形按如图所示的位置摆放,如果,,那么的度数等于________.
15. 如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为______.
三.解答题(共8题,总计75分)
16. 计算:
(1)
(2)
17. 已知实数x满足,求的值.
18. 如图,在平面直角坐标系中,每个小正方形的边长均为1,点A的坐标为(﹣2,3).点B的坐标为(﹣3,1),点C的坐标为(1,﹣2).
(1)作出△ABC关于y轴对称的△A'B'C'.其中A',B',C'分别是A,B,C的对应点,不要求写作法;
(2)在x轴上找一点P,使得PB+PA的值最小.(不要求写作法)
19. 将两块大小相同的含30°角的直角三角板(∠BAC=∠B1A1C=30°)按图①的方式放置,固定三角板A1B1C,然后将三角板ABC绕直角顶点C顺时针方向旋转(旋转角小于90°)至图②所示的位置,AB与A1C交于点E,AC与A1B1交于点F,AB与A1B1交于点O.
(1)求证:△BCE≌△B1CF.
(2)当旋转角等于30°时,AB与A1B1垂直吗?请说明理由.
20. 如图,在△ABC中,AB=AC,∠A=36°,DE是AB的垂直平分线.
(1)求证:△BCD是等腰三角形;
(2)若△ABD的周长是a,BC=b,求△BCD的周长.(用含a,b的代数式表示)
21. 已知,其中,
(1)判断A与B的大小;
(2)阅读下面对B分解因式的方法:.请解决下列两个问题:
①仿照上述方法分解因式:;
②指出A与C哪个大,并说明理由.
22. 某县要修筑一条长为6000米的乡村旅游公路,准备承包给甲、乙两个工程队来合作完成,已知甲队每天筑路的长度是乙队的2倍,前期两队各完成了400米时,甲比乙少用了5天.
(1)求甲、乙两个工程队每天各筑路多少米?
(2)若甲队每天的工程费用为1.5万元,乙队每天的工程费用为0.9万元,要使完成全部工程的总费用不超过120万元,则至少要安排甲队筑路多少天?
23. 如图,△ABC中,AB=BC=AC=8cm,现有两点M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B点时,M、N同时停止运动.
(1)点M、N运动几秒时,M、N两点重合?
(2)点M、N运动几秒时,可得到等边三角形△AMN?
(3)当点M、N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如存在,请求出此时M、N运动的时间.
罗山县2022-2023学年八年级(上)数学期末模拟测试
参考答案及解析
一.选择题
1.【答案】:C
解析:A选项,图标不符合轴对称图形的定义,故不符合题意;
B选项,图标不符合轴对称图形的定义,故不符合题意;
C选项,图标符合轴对称图形的定义,故符合题意;
D选项,图标不符合轴对称图形的定义,故不符合题意;
故选:C.
2.【答案】:B
解析:解:利用三角形的三边关系可得应把8cm的木条截成两段,
如将8cm的线段分成3cm和5cm或4cm和4cm,所截成的两段线段之和大于6,所以,可以,
而6cm的线段无论如何分,分成的两段线段之和都小于8,所以,不可以.
故选:B.
2.【答案】:B
解析:A选项,,故不符合题意;
B选项,,故符合题意;
C选项,,故不符合题意;
D选项,,故不符合题意;
故选:B.
4.【答案】:D
解析:由题意可得△CAE≌△BAD,△DCO≌△EBO,△ACO≌△ABO,△DAO≌△EAO共4对三角形全等.
故选:D.
5.【答案】:B
解析:如图所示:
由题意得,∠ABD=60°,∠C=45°,
∴∠α=∠ABD−∠C=15°,故B正确.
故选:B.
6.【答案】:D
解析:解:根据三角形三边关系,
∴三角形的第三边x满足:,即,
故选:D.
7.【答案】:B
解析:解:四边形是长方形,
,
,
由题意可知,平分,
,
,
故选:B.
8.【答案】:C
解析:解:∵FE⊥DB,
∵∠DEF=90°,
∵∠1=50°,
∴∠D=90°﹣50°=40°,
∵AB∥CD,
∴∠2=∠D=40°.
故选C.
9.【答案】:B
解析:解:, 故A不符合题意;
不能用公式法分解因式,故B符合题意;
x2 2xy y2, 故C不符合题意;
, 故D不符合题意;
故选:B
10.【答案】:B
解析:原式,
∵为正整数,
∴,
∴原式可化为:,
∵分子比分母小1,且为正整数,
∴是真分数,且最小值是,
即,,
∴表示这个数的点落在线②处,
故选:B.
二. 填空题
11.【答案】: ﹣8a6
解析:解:(﹣2a2)3
=(-2)3•(a2)3
=﹣8a6,
故答案为:﹣8a6.
12.【答案】:或或
解析:解: ,
添加,,后可分别根据、、判定;
故答案为:或或.
13.【答案】:3
解析:解:如图,过点P作PF⊥AB于F,
∵AD是∠BAC的平分线,PE⊥AC,
∴PF=PE=3.
故答案为:3.
14.【答案】:
解析:等边三角形的每个内角的度数为,
正方形的每个内角的度数为,
正五边形的每个内角的度数为,
如图,的外角和等于,
,
即,
,
又,
,
解得,
故答案为:.
15.【答案】:
解析:解:如图作AF⊥x轴于F,CE⊥x轴于E.
∵四边形ABCO是正方形,
∴OA=OC,∠AOC=90°,
∵∠COE+∠AOF=90°,∠AOF+∠OAF=90°,
∴∠COE=∠OAF,
在△COE和△OAF中,
,
∴△COE≌△OAF,
∴CE=OF,OE=AF,
∵A(1,),
∴CE=OF=1,OE=AF=,
∴点C坐标,
故答案为:.
三.解答题
16【答案】:
(1);(2).
解析:
(1)原式=
=
;
(2)原式=
=..
17【答案】:
xx,
解析:
解:原式
,
,即,
原式
.
18【答案】:
(1)如图,△A'B'C'即所求作.见解析;(2)如图,点P即为所求作,见解析.
解析:
(1)如图,△A'B'C'即为所求作.
(2)如图,点P即为所求作.
19【答案】:
(1)证明见试题解析;(2)垂直.理由见试题解析
解析:
证明:两块大小相同的含30°角的直角三角板,
所以∠BCA=∠B1CA1 ,BC=B1C ,∠B=∠B1
∵∠BCA-∠A1CA=∠B1CA1-∠A1CA
即∠BCE=∠B1CF
∵,
∴△BCE≌△B1CF(ASA);
(2)解:AB与A1B1垂直,理由如下:
旋转角等于30°,即∠ECF=30°,
所以∠FCB1=60°,∠BCB1=150°,
又∠B=∠B1=60°,
根据四边形的内角和可知∠BOB1的度数为360°-60°-60°-150°=90°,
所以AB与A1B1垂直.
20【答案】:
(1)见解析 (2)a﹣b
解析:
【小问1解析】
证明:∵AB=AC,∠A=36°,
∴∠ABC=∠C==72°,
∵DE是AC的垂直平分线,
∴AD=BD,
∴∠ABD=∠A=36°,
∵∠CDB是△ADB的外角,
∴∠CDB=∠ABD+∠A=72°,
∴∠C=∠CDB,
∴CB=DB,
∴△BCD是等腰三角形;
【小问2解析】
解:由(1)可知AD=BD=CB=b,
∵△ABD周长是a,
∴AB=a﹣2b,
∵AB=AC,
∴CD=a﹣3b,
∴△BCD的周长=CD+BD+BC=a﹣3b+b+b=a﹣b.
21【答案】:
(1);
(2)①②当 ,,当时,,当时,,理由见解析.
解析:
(1)∵
,
∴.
(2)①
,
②
,
∵,
∴,
从而当时,,
当时,,
当时,.
22【答案】:
(1)甲每天筑路80米,乙每天筑路40米;
(2)甲至少要筑路50天
解析:
解:(1)设乙队每天筑路x米,则甲每天筑路2x米.
依题意,得:,
解得:x=40,
经检验:x=40是原分式方程的解,
则2x=80,
答:甲每天筑路80米,乙每天筑路40米;
(2)设甲筑路t天,则乙筑路天数为天,
依题意:,
解得:,
∴甲至少要筑路50天.
23【答案】:
(1)点M,N运动8秒时,M、N两点重合;
(2)点M、N运动秒时,可得到等边三角形△AMN;
(3)当M、N运动秒时,得到以MN为底边的等腰三角形AMN
解析:
【小问1解析】
解:设运动t秒,M、N两点重合,
根据题意得:2t﹣t=8,
∴t=8,
答:点M,N运动8秒时,M、N两点重合;
【小问2解析】
解:设点M、N运动x秒时,可得到等边三角形△AMN,
∵△AMN是等边三角形,
∴AN=AM,
∴x=8﹣2x,
解得:x=,
∴点M、N运动秒时,可得到等边三角形△AMN;
【小问3解析】
设M、N运动y秒时,得到以MN为底边的等腰三角形AMN.
∵△ABC是等边三角形,
∴AB=AC,∠C=∠B=60°,
∵△AMN是以MN为底边的等腰三角形,
∴AM=AN,
∴∠AMN=∠ANM,
∵∠C=∠B,AC=AB,
∴△ACN≌△ABM(AAS),
∴CN=BM,
∴CM=BN,
∴y﹣8=8×3﹣2y,
∴y=.
答:当M、N运动秒时,得到以MN为底边等腰三角形AMN
相关试卷
这是一份2023-2024学年河南省信阳市罗山县八年级(上)期末数学试卷(含解析),共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份河南省信阳市罗山县2023-2024学年八年级上学期期末数学试卷(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023-2024学年河南省信阳市罗山县八年级(上)期末数学试卷(含解析),共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。