终身会员
搜索
    上传资料 赚现金
    【寒假作业】(沪教版2020)高中数学 高一寒假巩固提升训练 高一下开学考试卷(测试范围:三角)-练习.zip
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      【寒假作业】(沪教版2020)高中数学 高一寒假巩固提升训练 高一下开学考试卷(测试范围:三角)(原卷版).docx
    • 解析
      【寒假作业】(沪教版2020)高中数学 高一寒假巩固提升训练 高一下开学考试卷(测试范围:三角)(解析版).docx
    【寒假作业】(沪教版2020)高中数学 高一寒假巩固提升训练  高一下开学考试卷(测试范围:三角)-练习.zip01
    【寒假作业】(沪教版2020)高中数学 高一寒假巩固提升训练  高一下开学考试卷(测试范围:三角)-练习.zip01
    【寒假作业】(沪教版2020)高中数学 高一寒假巩固提升训练  高一下开学考试卷(测试范围:三角)-练习.zip02
    【寒假作业】(沪教版2020)高中数学 高一寒假巩固提升训练  高一下开学考试卷(测试范围:三角)-练习.zip03
    还剩2页未读, 继续阅读
    下载需要35学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    【寒假作业】(沪教版2020)高中数学 高一寒假巩固提升训练 高一下开学考试卷(测试范围:三角)-练习.zip

    展开
    这是一份【寒假作业】(沪教版2020)高中数学 高一寒假巩固提升训练 高一下开学考试卷(测试范围:三角)-练习.zip,文件包含寒假作业沪教版2020高中数学高一寒假巩固提升训练高一下开学考试卷测试范围三角原卷版docx、寒假作业沪教版2020高中数学高一寒假巩固提升训练高一下开学考试卷测试范围三角解析版docx等2份试卷配套教学资源,其中试卷共15页, 欢迎下载使用。

    一.填空题(共12小题)
    1.(2021春•奉贤区期中)角可以换算成 弧度.
    【分析】利用等于弧度,计算即可.
    【解答】解:,
    所以可以换算成弧度.
    故答案为:.
    【点评】本题考查了角度制化为弧度制的应用问题,是基础题.
    2.的值为 .
    【分析】直接利用二倍角公式以及诱导公式化简求解即可.
    【解答】解:.
    故答案为:.
    【点评】本题考查二倍角公式以及诱导公式的应用,三角函数化简求值,考查计算能力.
    3.已知,,则 .
    【分析】根据同角的三角函数关系式以及余弦函数的倍角公式即可得到结论.
    【解答】解:,,
    平方得,
    即,
    ,,
    则,
    解得,
    ,,


    ,,
    则,
    故答案为:
    【点评】本题主要考查三角函数值的计算,根据同角的三角函数关系式以及余弦函数的倍角公式是解决本题的关键.
    4.(2021•黄浦区开学)若,则 .
    【分析】由两角和及两角差的余弦公式展开整理,可得代数式的值.
    【解答】解:因为,
    又因为

    故答案为:.
    【点评】本题考查同角三角函数的基本关系式及两角和,两角差的余弦公式的应用,属于基础题.
    5.(2021秋•石首市校级月考)已知扇形的周长为8,中心角为2弧度,则该扇形的面积为 4 .
    【分析】设出扇形的半径,求出扇形的弧长,利用周长公式,求出半径,然后求出扇形的面积.
    【解答】解:设扇形的半径为,弧长为,面积为,圆心角为,
    由于弧度,可得,
    由于扇形的周长为,
    所以,解得,弧长,
    所以扇形的面积为.
    故答案为:4.
    【点评】本题主要考查了扇形的面积公式的应用,考查计算能力,属于基础题.
    6.(2022•奉贤区校级开学)已知,则 .
    【分析】将已知等式两边平方,利用同角三角函数基本关系式即可计算得解.
    【解答】解:,
    两边平方可得:,
    ,则.
    故答案为:.
    【点评】本题主要考查了同角三角函数基本关系式在三角函数化简求值中的应用,属于基础题.
    7.(2021•黄浦区开学)在中,若,则 .
    【分析】直接利用余弦定理求解即可.
    【解答】解:中,,

    又,

    故答案为:.
    【点评】本题主要考查余弦定理的应用,考查计算能力,属于基础题.
    8.(2023•汉滨区校级模拟)已知,若,则的最小值为 .
    【分析】根据题意,利用同角三角函数的关系、两角和与差的三角函数公式,将已知等式化简整理,可得,进而得到,然后利用二次函数的性质,求出的最小值.
    【解答】解:根据题意,可得:

    由,可知,因此,
    所以,
    即,可得,整理得.
    因为,,所以,,
    所以,
    而,故,可得的最小值为.
    故答案为:.
    【点评】本题主要考查同角三角函数的关系、两角和与差的三角函数公式、二次函数的性质等知识,考查了计算能力、逻辑推理能力,属于中档题.
    9.(2022春•诏安县校级期中)已知中,,,若为钝角三角形,则的取值范围是 ,, .
    【分析】根据已知条件,结合三角形的性质,推得,再结合余弦定理,即可求解.
    【解答】解:在中,,,
    则,即,
    ,,,
    则角为钝角或角为钝角,
    若角是钝角,
    则,即,
    故,
    若角是钝角,
    则,即,解得.
    综上所述,的取值范围是,,.
    故答案为:,,.
    【点评】本题主要考查解三角形,考查转化能力,属于中档题.
    10.(2022春•郑州期中)如图所示,在平面四边形中,已知,,,,则的最大值为 56 .
    【分析】由余弦定量求得,再由余弦定理表示出,的关系,然后结合基本不等式得最大值.
    【解答】解:中,,
    中,由,得,
    所以,当且仅当时等号成立,所以的最大值为56.
    故答案为:56.
    【点评】本题考查余弦定理在三角形中的应用,属中档题.
    11.(2021•焦作模拟)已知的内角,,的对边分别为,,.若,则的最小值为 .
    【分析】由已知结合二倍角公式及正弦余弦定理进行化简,然后结合基本不等式即可求解.
    【解答】解:因为,
    所以,
    由正弦定理得,
    由余弦定理得,,
    则,
    所以,当且仅当时取等号,
    故,即最小值.
    故答案为:.
    【点评】本题主要考查了二倍角公式,正弦定理,余弦定理及基本不等式在求解三角形中的应用,属于中档题.
    12.(2021•黄浦区开学)在中,若存在△,满足,则称△是的一个“友好三角形”,若等腰三角形存在“友好三角形”,则其顶角大小为 .
    【分析】设等腰三角形中,,由新定义可得,,,,则,再结合诱导公式化简求值即可.
    【解答】解:不妨设等腰三角形中,,且,均为锐角,
    由已知可得,,,,
    则,且,均为锐角,
    所以(舍,或,
    所以,解得.
    故答案为:.
    【点评】本题以新定义为载体,考查三角函数的化简求值,考查转化思想及运算求解能力,属于中档题.
    二.选择题(共4小题)
    13.(2022•奉贤区校级开学)下列终边相同的角是
    A.与,B.与,
    C.与,D.与,
    【分析】根据奇数与偶数的表示法即可得出.
    【解答】解:与都表示奇数,
    与,表示终边相同的角.
    故选:.
    【点评】本题考查了奇数与偶数的表示法、终边相同的角,考查了推理能力与计算能力,属于基础题.
    14.(2020秋•凤凰县校级月考)已知为锐角的内角,则“”是“”的
    A.充分而不必要条件B.充要条件
    C.必要而不充分条件D.既不充分也不必要条件
    【分析】锐角三角形内角的范围,通过与的关系,由充要条件的定义判断即可.
    【解答】解:为锐角的内角,则,
    ,所以;,成立;
    所以为锐角的内角,则“”是“”的充分必要条件.
    故选:.
    【点评】本题考查充分必要条件的判断,训练掌握三角形内角的正弦函数值与角的对应关系,属于基础题.
    15.(2021•黄浦区开学)在中,已知,则下列结论正确的为
    A.B.
    C.D.
    【分析】根据,化简可得,再逐项分析即可得到答案.
    【解答】解:,

    又,
    ,即,

    对于,,不一定等于1,选项错误;
    对于,,当时等号成立,选项错误,
    对于,,不一定等于1,选项错误;
    对于,,选项正确.
    故选:.
    【点评】本题主要考查三角恒等变换,考查运算求解能力,属于基础题.
    16.(2021•黄浦区开学)在中,内角、、所对边边长分别为、、,若,则的大小是
    A.B.C.D.
    【分析】由正弦定理化简已知等式可得,利用同角三角函数基本关系式化简求得的值,可得:,,利用三角形内角和定理,两角和的正切函数公式可得,解得,分类讨论可求的值.
    【解答】解:,
    由正弦定理可得:,分
    ,可得:,分
    可得:,,

    ,分
    解得:,或,分
    当,舍去;
    当,,
    当,则,则,,矛盾,
    综上,.分
    故选:.
    【点评】本题主要考查了正弦定理,同角三角函数基本关系式,三角形内角和定理,两角和的正切函数公式在解三角形中的应用,考查了计算能力和转化思想、分类讨论思想的应用,属于中档题.
    三.解答题(共5小题)
    17.已知,且,,求与.
    【分析】由已知利用诱导公式及同角三角函数基本关系式可求的值,进而利用二倍角公式即可求解.
    【解答】解:因为,可得,
    又,,
    所以,
    所以,

    所以.
    【点评】本题考查了诱导公式,同角三角函数基本关系式以及二倍角公式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题.
    18.(2021•黄浦区开学)已知,均为锐角,且,.
    (1)求的值;
    (2)求的值.
    【分析】根据平方关系和是锐角即可得出,再利用基本关系式即可得出,利用两角和的正切公式即可得出,利用基本关系式可得,,利用两角和的余弦公式展开即可得出.
    【解答】解:(1)法一,,,.
    ,解得.
    联立,解得.

    法二:令,那么,
    由得:
    (2)由(1)可得.
    【点评】本题中考查了三角函数的基本关系式、正切公式、两角和的余弦公式等基础知识与基本方法,属于基础题.
    19.(2021•黄浦区开学)在中,、、分别为角、、所对应的边,已知,,.
    (1)求的值;
    (2)在边上取一点,使得,求的值.
    【分析】(1)先由余弦定理求得,再由正弦定理可求得的值;
    (2)根据平方关系求得,再根据商数关系得解.
    【解答】解:(1)由余弦定理可得,,

    由正弦定理可得,,则;
    (2),且为钝角,


    【点评】本题考查正余弦定理在解三角形中的运用以及同角三角函数的基本关系,考查运算求解能力,属于基础题.
    20.(2022•闵行区校级开学)在平面直角坐标系中,,是位于不同象限的任意角,它们的终边交单位圆(圆心在坐标原点于,两点.
    (1)已知点,将绕原点顺时针旋转到,求点的坐标;
    (2)若角为锐角,且终边绕原点逆时针转过后,终边交单位圆于,求的值;
    (3)若,两点的纵坐标分别为正数,,且,求的最大值.
    【分析】(1)设,,可得,利用任意角的三角函数的定义,诱导公式即可求解;
    (2)由题意利用任意角的三角函数的定义求得和的值,再利用两角和差的三角公式,即可求得的值;
    (3)由题意,角和角一个在第一象限,另一个在第二象限,再利用任意角的三角函数的定义、两角和差的三角公式,可得,平方可得,再利用基本不等式求得的最大值.
    【解答】解:(1)点,将绕原点顺时针旋转到,
    设,,所以,
    可得,

    的坐标为,.
    (2)角为锐角,且终边绕原点逆时针转过后,终边交单位圆于,
    ,且,求得,则,,
    则.
    (3)角和角一个在第一象限,另一个在第二象限,
    不妨假设在第一象限,则在第二象限,
    根据题意可得、,且,,
    ,,

    即,
    平方可得,,当且仅当时,取等号.
    ,当且仅当时,取等号,
    故当时,取得最大值为.
    【点评】本题主要考查任意角的三角函数的定义,诱导公式,两角和差的三角公式,基本不等式的应用,考查运算求解能力,属于中档题.
    21.(2022•闵行区校级开学)某个公园有个池塘,其形状为直角三角形,,米,米.
    (1)现在准备养一批供游客观赏的鱼,分别在、、上取点、、,并且,,(如图,游客要在内喂鱼,希望面积越大越好.设(米,用表示面积,并求出的最大值;
    (2)现在准备新建造一个走廊,方便游客通行,分别在、、上取点、、,建造正走廊(不考虑宽度)(如图,游客希望周长越小越好.设,用表示的周长,并求出的最小值.
    【分析】(1)通过三角形,求出,设,,求出,,表示出三角形的面积,利用二次函数求出最值.
    (2)设边长为,,,利用正弦定理求出的表达式,求出的最小值,的最小值.
    【解答】解:(1)直角三角形,,米,米


    ,,
    设,,,,
    ,,,

    当时,;
    (2)设边长为,,,
    ,,,
    在三角形中,,

    的最小值为,
    的最小值是.
    【点评】本题考查三角形的面积的求法,三角函数的最值的应用,考查转化思想以及计算能力.
    相关试卷

    【寒假作业】(沪教版2020)高中数学 高一寒假巩固提升训练 专题12+寒假成果评价卷+(测试范围:三角)-练习: 这是一份【寒假作业】(沪教版2020)高中数学 高一寒假巩固提升训练 专题12+寒假成果评价卷+(测试范围:三角)-练习,文件包含寒假作业沪教版2020高中数学高一寒假巩固提升训练专题12寒假成果评价卷测试范围三角原卷版docx、寒假作业沪教版2020高中数学高一寒假巩固提升训练专题12寒假成果评价卷测试范围三角解析版docx等2份试卷配套教学资源,其中试卷共17页, 欢迎下载使用。

    【寒假作业】(沪教版2020)高中数学 高一寒假巩固提升训练 高一下开学考试卷(测试范围:三角)-练习: 这是一份【寒假作业】(沪教版2020)高中数学 高一寒假巩固提升训练 高一下开学考试卷(测试范围:三角)-练习,文件包含寒假作业沪教版2020高中数学高一寒假巩固提升训练高一下开学考试卷测试范围三角原卷版docx、寒假作业沪教版2020高中数学高一寒假巩固提升训练高一下开学考试卷测试范围三角解析版docx等2份试卷配套教学资源,其中试卷共15页, 欢迎下载使用。

    【寒假作业】(沪教版2020)高中数学 高一寒假巩固提升训练 专题12+寒假成果评价卷+(测试范围:三角)-练习.zip: 这是一份【寒假作业】(沪教版2020)高中数学 高一寒假巩固提升训练 专题12+寒假成果评价卷+(测试范围:三角)-练习.zip,文件包含寒假作业沪教版2020高中数学高一寒假巩固提升训练专题12寒假成果评价卷测试范围三角原卷版docx、寒假作业沪教版2020高中数学高一寒假巩固提升训练专题12寒假成果评价卷测试范围三角解析版docx等2份试卷配套教学资源,其中试卷共16页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        【寒假作业】(沪教版2020)高中数学 高一寒假巩固提升训练 高一下开学考试卷(测试范围:三角)-练习.zip
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map