2023-2024学年北京市密云区冯家峪中学数学九年级第一学期期末复习检测试题含答案
展开学校_______ 年级_______ 姓名_______
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.已知:如图,某学生想利用标杆测量一棵大树的高度,如果标杆EC的高为 1.6 m,并测得BC=2.2 m ,CA=0.8 m, 那么树DB的高度是( )
A.6 mB.5.6 mC.5.4 mD.4.4 m
2.如图,在△ABC中,∠BAC=65°,将△ABC绕点A逆时针旋转,得到△AB'C',连接C'C.若C'C∥AB,则∠BAB'的度数为( )
A.65°B.50°C.80°D.130°
3.若关于x的一元二次方程kx2+2x+1=0有实数根,则k的取值范围是( )
A.k<1且k≠0B.k≤1且k≠0C.k≥﹣1且k≠0D.k>﹣1且k≠0
4.方程的解的个数为( )
A.0B.1C.2D.1或2
5.我国古代数学名著《孙子算经》中记载了一道大题,大意是:匹马恰好拉了片瓦,已知匹小马能拉片瓦,匹大马能拉片瓦,求小马、大马各有多少匹,若设小马有匹,大马有匹,依题意,可列方程组为( )
A.B.
C.D.
6. “学雷锋”活动月中,“飞翼”班将组织学生开展志愿者服务活动,小晴和小霞从“图书馆,博物馆,科技馆”三个场馆中随机选择一个参加活动,两人恰好选择同一场馆的概率是( )
A.B.C.D.
7.如图,正比例函数与反比例函数的图象交于、两点,其中,则不等式的解集为( )
A.B.
C.或D.或
8.有n支球队参加篮球比赛,共比赛了15场,每两个队之间只比赛一场,则下列方程中符合题意的是( )
A.n(n﹣1)=15B.n(n+1)=15
C.n(n﹣1)=30D.n(n+1)=30
9.某公司一月份缴税40万元,由于公司的业绩逐月稳步上升,假设每月的缴税增长率相同,第一季度共缴税145.6万元,该公司这季度缴税的月平均增长率为多少?设公司这季度缴税的月平均增长率为x,则下列所列方程正确的是( )
A.B.
C.D.
10.已知,且α是锐角,则α的度数是( )
A.30°B.45°C.60°D.不确定
二、填空题(每小题3分,共24分)
11.如图,在平面直角坐标系中,直角三角形的直角顶点与原点O重合,顶点A,B恰好分别落在函数,的图象上,则tan∠ABO的值为___________
12.小天想要计算一组数据92,90,94,86,99,85的方差S02,在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,﹣4,9,﹣5,记这组新数据的方差为S12,则S12__S02(填“>”,“=”或”<”)
13.△ABC中,∠A、∠B都是锐角,若sinA=,csB=,则∠C=_____.
14.圆的半径为1,AB是圆中的一条弦,AB=,则弦AB所对的圆周角的度数为____.
15.一件商品的原价是100元,经过两次提价后的价格为121元,设平均每次提价的百分率都是x.根据题意,可列出方程___________________.
16.过⊙O内一点M的最长弦为10cm,最短弦为8cm,则OM= cm.
17.已知小明身高,在某一时刻测得他站立在阳光下的影长为.若当他把手臂竖直举起时,测得影长为,则小明举起的手臂超出头顶______.
18.已知x=﹣1是方程x2﹣2mx﹣3=0的一个根,则该方程的另一个根为_____.
三、解答题(共66分)
19.(10分)一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外完全相同,其中红球1个,若从中随机摸出一个球,这个球是白球的概率为
(1)求袋子中白球的个数
(2)随机摸出一个球后,放回并搅匀,再随机摸出一个球,请用画树状图或列表的方法,求两次都摸到白球的概率.
20.(6分)如图,在中,过半径OD中点C作AB⊥OD交O于A,B两点,且.
(1)求OD的长;
(2)计算阴影部分的面积.
21.(6分)如图,一次函数的图象与反比例函数的图象交于A(﹣2,1),B(1,n)两点.
根据以往所学的函数知识以及本题的条件,你能提出求解什么问题?并解决这些问题(至少三个问题).
22.(8分)我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为的条件下生长最快的新品种.下图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(°C)随时间x(小时)变化的函数图象,其中段是双曲线的一部分.请根据图中信息解答下列问题:
(1)恒温系统在这天保持大棚内温度的时间有________小时;
(2)当时,大棚内的温度约为多少度?
23.(8分)如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象分别相交于第一、三象限内的,两点,与轴交于点.
(1)求该反比例函数和一次函数的解析式;
(2)在轴上找到一点使最大,请直接写出此时点的坐标.
24.(8分)如图,在正方形中,对角线、相交于点,为上动点(不与、重合),作,垂足为,分别交、于、,连接、.
(1)求证:;
(2)求的度数;
(3)若,,求的面积.
25.(10分)某高科技发展公司投资500万元,成功研制出一种市场需求量较大的高科技替代产品,并投入资金1500万元作为固定投资. 已知生产每件产品的成本是40元,在销售过程中发现:当销售单价定为120元时,年销售量为20万件;销售单价每增加10元,年销售量将减少1万件,设销售单价为(元),年销售量为(万件),年获利为(万元)。(年获利=年销售额—生产成本—投资)
(1)试写出与之间的函数关系式;
(2)请通过计算说明,到第一年年底,当取最大值时,销售单价定为多少?此时公司是盈利了还是亏损了?
26.(10分)如图,以△ABC的边AB为直径画⊙O,交AC于点D,半径OE//BD,连接BE,DE,BD,设BE交AC于点F,若∠DEB=∠DBC.
(1)求证:BC是⊙O的切线;
(2)若BF=BC=2,求图中阴影部分的面积.
参考答案
一、选择题(每小题3分,共30分)
1、A
2、B
3、B
4、C
5、A
6、A
7、D
8、C
9、D
10、C
二、填空题(每小题3分,共24分)
11、
12、=
13、60°.
14、60°或120°
15、100(1+x)2=1.
16、3
17、0.54
18、1
三、解答题(共66分)
19、(1)袋子中白球有2个;(2)(两次都摸到白球)
20、(1);(2)
21、见解析
22、(1)8;(2).
23、(1),;(2)
24、(1)见解析;(2);(3)3
25、(1);(2)当销售单价为180元,年获利最大,并且第一年年底公司亏损了,还差40万元就可收回全部投资.
26、 (1)证明见解析;(2).
北京密云冯家峪中学2023-2024学年九年级数学第一学期期末达标检测模拟试题含答案: 这是一份北京密云冯家峪中学2023-2024学年九年级数学第一学期期末达标检测模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,一元二次方程的两根之和为等内容,欢迎下载使用。
2023-2024学年北京密云冯家峪中学八年级数学第一学期期末质量跟踪监视模拟试题含答案: 这是一份2023-2024学年北京密云冯家峪中学八年级数学第一学期期末质量跟踪监视模拟试题含答案,共7页。试卷主要包含了下列图案属于轴对称图形的是,如图,若,则下列结论错误的是等内容,欢迎下载使用。
2023-2024学年北京密云冯家峪中学八年级数学第一学期期末经典模拟试题含答案: 这是一份2023-2024学年北京密云冯家峪中学八年级数学第一学期期末经典模拟试题含答案,共7页。试卷主要包含了对于任何整数,多项式都能,计算12a2b4•÷的结果等于,下列因式分解中,以下命题的逆命题为真命题的是等内容,欢迎下载使用。