2023-2024学年北京市怀柔区数学九年级第一学期期末学业质量监测试题含答案
展开
这是一份2023-2024学年北京市怀柔区数学九年级第一学期期末学业质量监测试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,二次函数 y=等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.如图,已知DE∥BC,CD和BE相交于点O,S△DOE:S△COB=4:9,则AE:EC为( )
A.2:1B.2:3C.4:9D.5:4
2.如图,二次函数的图象与轴正半轴相交于A、B两点,与轴相交于点C,对称轴为直线且OA=OC,则下列结论:①②③④关于的方程有一个根为其中正确的结论个数有( )
A.1个B.2个C.3个D.4个
3.下列方程是一元二次方程的是( )
A.2x﹣3y+1B.3x+y=zC.x2﹣5x=1D.x2﹣+2=0
4.一元二次方程x2+bx﹣2=0中,若b<0,则这个方程根的情况是( )
A.有两个正根 B.有一正根一负根且正根的绝对值大
C.有两个负根 D.有一正根一负根且负根的绝对值大
5.如图,AB是⊙O的直径,PD切⊙O于点C,交AB的延长线于D,且AO=CD,则∠PCA=( )
A.30°B.60°C.67.5°D.45°
6.m是方程的一个根,且,则 的值为( )
A.B.1C.D.
7.下列图形中,∠1与∠2是同旁内角的是( )
A.
B.
C.
D.
8.如图,是的边上的一点,下列条件不可能是的是( )
A.B.
C.D.
9.二次函数 y=(x-1)2 -5 的最小值是( )
A.1B.-1C.5D.-5
10.如图,AB为⊙O的直径,CD是⊙O的弦,∠ADC=35°,则∠CAB的度数为( )
A.35°B.45°C.55°D.65°
二、填空题(每小题3分,共24分)
11.将一副三角板按图所示的方式叠放在一起,使直角的顶点重合于点,并能使点自由旋转,设,,则与之间的数量关系是__________.
12.如图,在四边形中,,,,点为边上一点,连接.,与交于点,且,若,,则的长为_______________.
13.已知扇形的弧长为2,圆心角为60°,则它的半径为________.
14.在一次射击比赛中,甲、乙两名运动员 10 次射击的平均成绩都是 7 环,其中甲的成绩的方差为 1.2,乙的成绩的方差为 3.9,由此可知_____的成绩更稳定.
15.如图,矩形中,边长,两条对角线相交所成的锐角为,是边的中点,是对角线上的一个动点,则的最小值是_______.
16.已知A(-4,2),B(2,-4)是一次函数的图像和反比例函数图像的两个交点.则关于的方程的解是__________________.
17.如图,已知的半径为2,内接于,,则__________.
18.某剧场共有个座位,已知每行的座位数都相同,且每行的座位数比总行数少,求每行的座位数.如果设每行有个座位,根据题意可列方程为_____________.
三、解答题(共66分)
19.(10分)如图,在△ABC中,AC⊥BC,∠ABC=30°,点D是CB延长线上一点,且BD=BA,求tan∠ADC的值.
20.(6分)二次函数图象过,,三点,点的坐标为,点的坐标为,点在轴正半轴上,且,求二次函数的表达式.
21.(6分)感知定义
在一次数学活动课中,老师给出这样一个新定义:如果三角形的两个内角α与β满足α+2β=90°,那么我们称这样的三角形为“类直角三角形”.
尝试运用
(1)如图1,在Rt△ABC中,∠C=90°,BC=3,AB=5,BD是∠ABC的平分线.
①证明△ABD是“类直角三角形”;
②试问在边AC上是否存在点E(异于点D),使得△ABE也是“类直角三角形”?若存在,请求出CE的长;若不存在,请说明理由.
类比拓展
(2)如图2,△ABD内接于⊙O,直径AB=10,弦AD=6,点E是弧AD上一动点(包括端点A,D),延长BE至点C,连结AC,且∠CAD=∠AOD,当△ABC是“类直角三角形”时,求AC的长.
22.(8分)如图1是超市的手推车,如图2是其侧面示意图,已知前后车轮半径均为5 cm,两个车轮的圆心的连线AB与地面平行,测得支架AC=BC=60cm,AC、CD所在直线与地面的夹角分别为30°、60°,CD=50cm.
(1)求扶手前端D到地面的距离;
(2)手推车内装有简易宝宝椅,EF为小坐板,打开后,椅子的支点H到点C的距离为10 cm,DF=20cm,EF∥AB,∠EHD=45°,求坐板EF的宽度.(本题答案均保留根号)
23.(8分)每年十月的第二个周四是世界爱眼日,为预防近视,超市决定对某型号护眼台灯进行降价销售.降价前,进价为30元的护眼台灯以80元售出,平均每月能售出200盏,调查表明:这种护眼台灯每盏售价每降低1元,其月平均销售量将增加10盏.
(1)写出月销售利润y(单位:元)与销售价x(单位:元/盏)之间的函数表达式;
(2)当销售价定为多少元时,所得月利润最大?最大月利润为多少元?
24.(8分)已知△ABC为等边三角形, M为三角形外任意一点,把△ABM绕着点A按逆时针方向旋转60°到△CAN的位置.
(1)如图①,若∠BMC=120°,BM=2,MC=3.求∠AMB的度数和求AM的长.
(2)如图②,若∠BMC = n°,试写出AM、BM、CM之间的数量关系,并证明你的猜想.
25.(10分)粤东农批﹒2019球王故里五华马拉松赛于12月1日在广东五华举行,组委会为了做好运动员的保障工作,沿途设置了4个补给站,分别是:A(粤东农批)、B(奥体中心)、C(球王故里)和D(滨江中路),志愿者小明和小红都计划各自在这4个补给站中任意选择一个进行补给服务,每个补给站被选择的可能性相同.
(1)小明选择补给站C(球王故里)的概率是多少?
(2)用树状图或列表的方法,求小明和小红恰好选择同一个补给站的概率.
26.(10分)将笔记本电脑放置在水平桌面上,显示屏OB与底板OA夹角为115°(如图1),侧面示意图为图2;使用时为了散热,在底板下面垫入散热架O′AC后,电脑转到AO′B′的位置(如图3),侧面示意图为图4,已知OA=OB=20cm,B′O′⊥OA,垂足为C.
(1)求点O′的高度O′C;(精确到0.1cm)
(2)显示屏的顶部B′比原来升高了多少?(精确到0.1cm)
(3)如图4,要使显示屏O′B′与原来的位置OB平行,显示屏O′B′应绕点O′按顺时针方向旋转多少度?
参考数据:(sin65°=0.906,cs65°=0.423,tan65°=2.1.ct65°=0.446)
参考答案
一、选择题(每小题3分,共30分)
1、A
2、C
3、C
4、B
5、C
6、A
7、C
8、B
9、D
10、C
二、填空题(每小题3分,共24分)
11、
12、
13、6.
14、甲
15、
16、x1=-4,x1=1
17、
18、x(x+12)=1
三、解答题(共66分)
19、2﹣.
20、
21、(1)①证明见解析;②CE=;(2)当△ABC是“类直角三角形”时,AC的长为或.
22、(1)35+;(2)坐板EF的宽度为()cm.
23、(1)y=﹣10x2+1300x﹣30000;(2)销售价定为65元时,所得月利润最大,最大月利润为12250元.
24、(1)60°,5;(2)AM=BM+CM
25、(1 );(2)
26、(1)8.5cm;(2)显示屏的顶部B′比原来升高了10.3cm;(3)显示屏O′B′应绕点O′按顺时针方向旋转25度.
相关试卷
这是一份北京市顺义区2023-2024学年数学九年级第一学期期末学业质量监测试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,我国传统文化中的“福禄寿喜”图,如图,在菱形中,,且连接则等内容,欢迎下载使用。
这是一份北京市怀柔区2023-2024学年数学九年级第一学期期末教学质量检测试题含答案,共8页。试卷主要包含了如果,那么,化简的结果是等内容,欢迎下载使用。
这是一份北京市西城区名校2023-2024学年九年级数学第一学期期末学业质量监测试题含答案,共8页。试卷主要包含了如图的中,,且为上一点,下列调查方式合适的是等内容,欢迎下载使用。