2023-2024学年北京市东城区九年级数学第一学期期末学业水平测试模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)
1.下列语句所描述的事件是随机事件的是( )
A.经过任意两点画一条直线B.任意画一个五边形,其外角和为360°
C.过平面内任意三个点画一个圆D.任意画一个平行四边形,是中心对称图形
2.在Rt△ABC中,∠C=90°,若斜边AB是直角边BC的3倍,则tanB的值是( )
A.B.3C.D.2
3.如图,为的直径,点为上一点,,则劣弧的长度为( )
A.B.
C.D.
4.将一元二次方程化成一般式后,二次项系数和一次项系数分别为( )
A.4,3B.4,7C.4,-3D.
5.如图,在锐角△ABC中,∠A=60°,∠ACB=45°,以BC为弦作⊙O,交AC于点D,OD与BC交于点E,若AB与⊙O相切,则下列结论:
①∠BOD=90°;②DO∥AB;③CD=AD;④△BDE∽△BCD;⑤
正确的有( )
A.①②B.①④⑤C.①②④⑤D.①②③④⑤
6.如何求tan75°的值?按下列方法作图可解决问题,如图,在Rt△ABC中,AC=k,∠ACB=90°,∠ABC=30°,延长CB至点M,在射线BM上截取线段BD,使BD=AB,连接AD,依据此图可求得tan75°的值为( )
A.B.C.D.
7.如图,为的直径,为上一点,弦平分,交于点,,,则的长为( )
A.2.5B.2.8C.3D.3.2
8.函数y=mx2+(m+2)x+m+1的图象与x轴只有一个交点,则m的值为( )
A.0B.0或2C.0或2或﹣2D.2或﹣2
9.已知点P(a+1,)关于原点的对称点在第四象限,则a的取值范围在数轴上表示正确的是( )
A.B.
C.D.
10.已知抛物线y=﹣x2+bx+4经过(﹣2,﹣4),则b的值为( )
A.﹣2B.﹣4C.2D.4
二、填空题(每小题3分,共24分)
11.已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于(x1,0),且﹣1<x1<0,对称轴x=1.如图所示,有下列5个结论:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的实数).其中所有结论正确的是______(填写番号).
12.如图,在矩形ABCD中,点E是边BC的中点,AE⊥BD,垂足为F,则tan∠BDE的值是_____
13.如图,在长方形中,cm,cm,将此长方形折叠,使点与点重合,折痕为,则的面积为________.
14.如图,将一张画有内切圆⊙P的直角三角形纸片AOB置于平面直角坐标系中,已知点A(0,3),B(4,0),⊙P与三角形各边相切的切点分别为D、E、F. 将直角三角形纸片绕其右下角的顶点依次按顺时针方向旋转,第一次旋转至图①位置,第二次旋转至图②位置,…,则直角三角形纸片旋转2018次后,它的内切圆圆心P的坐标为____.
15.如图,将一个含30°角的三角尺ABC放在直角坐标系中,使直角顶点C与原点O重合,顶点A,B分别在反比例函数y=﹣和y=的图象上,则k的值为___.
16.布袋里有8个大小相同的乒乓球,其中2个为红色,1个为白色,5个为黄色,搅匀后从中随机摸出一个球是红色的概率是__________.
17.如图,设点P在函数y=的图象上,PC⊥x轴于点C,交函数y= 的图象于点A,PD⊥y轴于点D,交函数y=的图象于点B,则四边形PAOB的面积为_____.
18.函数中,自变量的取值范围是_____.
三、解答题(共66分)
19.(10分)已知抛物线y=x2﹣2ax+m.
(1)当a=2,m=﹣5时,求抛物线的最值;
(2)当a=2时,若该抛物线与坐标轴有两个交点,把它沿y轴向上平移k个单位长度后,得到新的抛物线与x轴没有交点,请判断k的取值情况,并说明理由;
(3)当m=0时,平行于y轴的直线l分别与直线y=x﹣(a﹣1)和该抛物线交于P,Q两点.若平移直线l,可以使点P,Q都在x轴的下方,求a的取值范围.
20.(6分)用“☆”定义一种新运算:对于任意有理数a和b,规定a☆b=ab2+2ab+a.如:1☆3=1×32+2×1×3+1=16.
(1)求(-2)☆3的值;
(2)若=8,求a的值.
21.(6分)已知抛物线与轴交于点和且过点.
求抛物线的解析式;
抛物线的顶点坐标;
取什么值时,随的增大而增大;取什么值时,随增大而减小.
22.(8分)在平面直角坐标系中,直线y=x+3与x轴交于点A,与y轴交于点B,抛物线y=a+bx+c(a<0)经过点A,B,
(1)求a、b满足的关系式及c的值,
(2)当x<0时,若y=a+bx+c(a<0)的函数值随x的增大而增大,求a的取值范围,
(3)如图,当a=−1时,在抛物线上是否存在点P,使△PAB的面积为?若存在,请求出符合条件的所有点P的坐标;若不存在,请说明理由,
23.(8分)为了加强学校的体育活动,某学校计划购进甲、乙两种篮球,根据市场调研发现,如果购进甲篮球2个和乙篮球3个共需270元;购进甲篮球3个和乙篮球2个共需230元.
(1)求甲、乙两种篮球每个的售价分别是多少元?
(2)为满足开展体育活动的需求,学校计划购进甲、乙两种篮球共100个,由于购货量大,和商场协商,商场决定甲篮球以九折出售,乙篮球以八折出售,学校要求甲种篮球的数量不少于乙种篮球数量的4倍,甲种篮球的数量不多于90个,请你求出学校花最少钱的进货方案;
(3)学校又拿出省下的290元购买跳绳和毽子两种体育器材,跳绳10元一根,毽子5元一个,在把钱用尽的情况下,有多少种进货方案?
24.(8分)计算:()-1 -cs45° -(2020+π)0+3tan30°
25.(10分)时下正是海南百香果丰收的季节,张阿姨到“海南爱心扶贫网”上选购百香果,若购买2千克“红土”百香果和1千克“黄金”百香果需付80元,若购买1千克“红土”百香果和3千克“黄金”百香果需付115元.请问这两种百香果每千克各是多少元?
26.(10分)解方程:(1)x2﹣1x+5=0(配方法) (2)(x+1)2=1x+1.
参考答案
一、选择题(每小题3分,共30分)
1、C
2、D
3、A
4、C
5、C
6、B
7、B
8、C
9、C
10、C
二、填空题(每小题3分,共24分)
11、③④⑤
12、
13、6
14、 (8075,1)
15、1.
16、
17、4
18、
三、解答题(共66分)
19、(3)-3;(2)k>2,见解析;(3)a>3或a<﹣3
20、 (1)-32;(2) a=1.
21、(1);(1);(3)当时,随增大而增大;当时,随增大而减小.
22、(1)b=3a+1;c=3;(2);(3)点P的坐标为:(,)或(,)或(,)或(,).
23、(1)甲种篮球每个的售价为30元,乙种篮球每个的售价为70元;(2)花最少钱的进货方案为购进甲种篮球90个,乙种篮球10个;(3)有28种进货方案.
24、.
25、红土”百香果每千克25元,“黄金”百香果每千克30元
26、 (2)x2=3,x2=2;(2)x2=﹣2,x2=3
北京市第35中学2023-2024学年九上数学期末学业水平测试模拟试题含答案: 这是一份北京市第35中学2023-2024学年九上数学期末学业水平测试模拟试题含答案,共7页。试卷主要包含了二次函数的图象的顶点坐标是,抛物线的顶点坐标是,已知点,一元二次方程x等内容,欢迎下载使用。
北京市房山区2023-2024学年九年级数学第一学期期末学业水平测试模拟试题含答案: 这是一份北京市房山区2023-2024学年九年级数学第一学期期末学业水平测试模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,下列说法中正确的是,在比例尺为1等内容,欢迎下载使用。
北京市昌平区名校2023-2024学年九上数学期末学业水平测试模拟试题含答案: 这是一份北京市昌平区名校2023-2024学年九上数学期末学业水平测试模拟试题含答案,共7页。试卷主要包含了下列事件中,是必然事件的是,校园内有一个由两个全等的六边形等内容,欢迎下载使用。