2023-2024学年安徽省铜陵市名校数学九上期末统考模拟试题含答案
展开这是一份2023-2024学年安徽省铜陵市名校数学九上期末统考模拟试题含答案,共8页。试卷主要包含了分式方程的根是,如图一段抛物线y=x2﹣3x等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题3分,共30分)
1.下列命题错误的是 ( )
A.经过三个点一定可以作圆
B.经过切点且垂直于切线的直线必经过圆心
C.同圆或等圆中,相等的圆心角所对的弧相等
D.三角形的外心到三角形各顶点的距离相等
2.已知反比例函数的图象经过点(m,3m),则此反比例函数的图象在( )
A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限
3.抛物线的对称轴为直线,与轴的一个交点坐标为,其部分图象如图所示.下列叙述中:①;②关于的方程的两个根是;③;④;⑤当时,随增大而增大.正确的个数是( )
A.4B.3C.2D.1
4.分式方程的根是( )
A.B.C.D.无实根
5.一元二次方程x2﹣6x﹣1=0配方后可变形为( )
A.B.
C.D.
6.一个不透明的盒子装有个除颜色外完全相同的球,其中有4个白球.每次将球充分搅匀后,任意摸出1个球记下颜色后再放回盒子,通过如此大量重复试验,发现摸到白球的频率稳定在0.2左右,则的值约为( )
A.8B.10C.20D.40
7.如图,在▱ABCD中,F为BC的中点,延长AD至E,使DE:AD=1:3,连接FF交DC于点G,则DG:CG=( )
A.1:2B.2:3C.3:4D.2:5
8.如图,△AOB缩小后得到△COD,△AOB与△COD的相似比是3,若C(1,2),则点A的坐标为( )
A.(2,4)B.(2,6)C.(3,6)D.(3,4)
9.如图一段抛物线y=x2﹣3x(0≤x≤3),记为C1,它与x轴于点O和A1:将C1绕旋转180°得到C2,交x轴于A2;将C2绕旋转180°得到C3,交x轴于A3,如此进行下去,若点P(2020,m)在某段抛物线上,则m的值为( )
A.0B.﹣C.2D.﹣2
10.如图,的半径为2,弦,点P为优弧AB上一动点,,交直线PB于点C,则的最大面积是
A.B.1C.2D.
二、填空题(每小题3分,共24分)
11.已知在中,,,,那么_____________.
12.若a,b是一元二次方程的两根,则________.
13.如图,将半径为2,圆心角为90°的扇形BAC绕点A逆时针旋转60°,点B、C的对应点分别为D、E,点D在上,则阴影部分的面积为_____.
14.若正六边形的边长为2,则此正六边形的边心距为______.
15.如图,在直角△OAB中,∠AOB=30°,将△OAB绕点O逆时针旋转100°得到△OA1B1,则∠A1OB= °.
16.如图,的半径弦于点,连结并延长交于点,连结.若,,则的长为_______.
17.二次函数图象的顶点坐标为________.
18.如图,将一张正方形纸片,依次沿着折痕,(其中)向上翻折两次,形成“小船”的图样.若,四边形与的周长差为,则正方形的周长为______.
三、解答题(共66分)
19.(10分)某汽车销售商推出分期付款购车促销活动,交首付款后,余额要在30个月内结清,不计算利息,王先生在活动期间购买了价格为12万元的汽车,交了首付款后平均每月付款万元,个月结清.与的函数关系如图所示,根据图像回答下列问题:
(1)确定与的函数解析式,并求出首付款的数目;
(2)王先生若用20个月结清,平均每月应付多少万元?
(3)如果打算每月付款不超过4000元,王先生至少要几个月才能结清余额?
20.(6分)关于x的一元二次方程为(m-1)x2-2mx+m+1=0
(1)求出方程的根;
(2)m为何整数时,此方程的两个根都为正整数?
21.(6分)一不透明的布袋里,装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球2个,蓝球1个,黄球若干个,现从中任意摸出一个球是红球的概率为.
(1)求口袋中黄球的个数;
(2)甲同学先随机摸出一个小球(不放回),再随机摸出一个小球,请用“树状图法”或“列表法”,求两次摸出都是红球的概率;
22.(8分)北京市第十五届人大常委会第十六次会议表决通过《关于修改<北京市生活垃圾管理条例>的决定》,规定将生活垃圾分为厨余垃圾、可回收物、有害垃圾、其它垃圾四大基本品类,修改后的条例将于2020年5月1日实施 .某小区决定在2020年1月到3月期间在小区内设置四种垃圾分类厢:厨余垃圾、可回收物、有害垃圾、其它垃圾,分别记为A、B、C、D,进行垃圾分类试投放,以增强居民垃圾分类意识.
(1)小明家按要求将自家的生活垃圾分成了四类,小明从分好类的垃圾中随机拿了一袋,并随机投入一个垃圾箱中,请用画树状图的方法求垃圾投放正确的概率;
(2)为调查居民生活垃圾分类投放情况,现随机抽取了该小区四类垃圾箱中共1 000千克生活垃圾,数据统计如下(单位:千克):
求“厨余垃圾”投放正确的概率.
23.(8分)如图,一次函数的图像与反比例函数(k>0)的图像交于A,B两点,过点A做x轴的垂线,垂足为M,△AOM面积为1.
(1)求反比例函数的解析式;
(2)在y轴上求一点P,使PA+PB的值最小,并求出其最小值和P点坐标.
24.(8分)如图,在平面直角坐标系中,∠ACB=90°,OC=2OB,tan∠ABC=2,点B的坐标为(1,0).抛物线y=﹣x2+bx+c经过A、B两点.
(1)求抛物线的解析式;
(2)点P是直线AB上方抛物线上的一点,过点P作PD垂直x轴于点D,交线段AB于点E,使PE最大.
①求点P的坐标和PE的最大值.
②在直线PD上是否存在点M,使点M在以AB为直径的圆上;若存在,求出点M的坐标,若不存在,请说明理由.
25.(10分)如图,在中, , 在,上取一点,以为直径作,与相交于点,作线段的垂直平分线交于点,连接.
(1) 求证:是的切线;
(2)若,的半径为.求线段与线段的长.
26.(10分)如图,点的坐标为,点的坐标为.点的坐标为.
(1)请在直角坐标系中画出绕着点逆时针旋转后的图形.
(2)直接写出:点的坐标(________,________),
(3)点的坐标(________,________).
参考答案
一、选择题(每小题3分,共30分)
1、A
2、B
3、B
4、A
5、B
6、C
7、B
8、C
9、C
10、B
二、填空题(每小题3分,共24分)
11、1
12、
13、
14、.
15、70
16、
17、
18、1
三、解答题(共66分)
19、(1)y=,3万元;(2)0.45万元;(3)23个月才能结清余款
20、(1)∴.
(2)m=2或3 .
21、 (1)1;(2)
22、(1)垃圾投放正确的概率为;(2)厨余垃圾投放正确的概率为
23、(1)y=;(2)最小值即为,P(0,).
24、(1)y=﹣x2﹣3x+4;(2)①,P② M(,)或(,)
25、(1)见解析;(2)
26、 (1)见解析;(2)-4.2;(3)-1.3.
A
B
C
D
厨余垃圾
400
100
40
60
可回收物
25
140
20
15
有害垃圾
5
20
60
15
其它垃圾
25
15
20
40
相关试卷
这是一份广东省清远市名校2023-2024学年九上数学期末统考模拟试题含答案,共8页。试卷主要包含了二次函数y=ax2+bx+4,抛物线y=ax2+bx+c,下列标志中是中心对称图形的是等内容,欢迎下载使用。
这是一份安徽省铜陵市名校2023-2024学年数学九年级第一学期期末监测模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔,下列函数中,一定是二次函数的是等内容,欢迎下载使用。
这是一份安徽省黄山市名校2023-2024学年数学九上期末统考模拟试题含答案,共8页。试卷主要包含了如图所示,该几何体的俯视图是,一人乘雪橇沿坡比1等内容,欢迎下载使用。