2023-2024学年广东省东莞市常平嘉盛实验学校数学九上期末统考试题含答案
展开这是一份2023-2024学年广东省东莞市常平嘉盛实验学校数学九上期末统考试题含答案,共7页。试卷主要包含了若y=是二次函数,则m等于,抛物线y=2,解方程最适当的方法是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题3分,共30分)
1.已知关于x的分式方程=1的解是非负数,则m的取值范围是( )
A.m1B.m1
C.m-1且m≠0D.m-1
2.已知二次函数,当时,随增大而增大,当时,随增大而减小,且满足,则当时,的值为( )
A.B.C.D.
3.我国传统文化中的“福禄寿喜”图(如图)由四个图案构成.这四个图案中既是轴对称图形,又是中心对称图形的是( )
A.B.C.D.
4.若函数,则当函数值y=8时,自变量x的值是( )
A.±B.4C.±或4D.4或-
5.在平面直角坐标系中,平移二次函数的图象能够与二次函数的图象重合,则平移方式为( )
A.向左平移个单位,向下平移个单位
B.向左平移个单位,向上平移个单位
C.向右平移个单位,向下平移个单位
D.向右平移个单位,向上平移个单位
6.如果某人沿坡度为的斜坡前进10m,那么他所在的位置比原来的位置升高了( )
A.6mB.8mC.10mD.12m
7.近视眼镜的度数y(度)与镜片焦距x(m)成反比例,已知200度近视眼镜镜片的焦距为0.5 m,则y与x的函数关系式为( )
A.y=B.y=
C.y=D.y=
8.若y=(2-m)是二次函数,则m等于( )
A.±2B.2C.-2D.不能确定
9.抛物线y=2(x﹣1)2+3的对称轴为( )
A.直线x=1 B.直线y=1 C.直线y=﹣1 D.直线x=﹣1
10.解方程最适当的方法是( )
A.直接开平方法B.配方法C.因式分解法D.公式法
二、填空题(每小题3分,共24分)
11.经过某十字路口的汽车,它可能直行,也可能向左转或向右转,假设这三种可能性大小相同,那么两辆汽车经过这个十字路口,一辆向左转,一辆向右转的概率是_____.
12.已知a、b、c满足,a、b、c都不为0,则=_____.
13.在如图所示的电路图中,当随机闭合开关,,中的两个时,能够让灯泡发光的概率为________.
14.设x1、x2是方程x﹣x﹣1=0的两个实数根,则x1+x2=_________.
15.如图,△ABC是等腰直角三角形,BC是斜边,P为△ABC内一点,将△ABP绕点A逆时针旋转后与△ACP′重合,若AP=1,那么线段PP′的长等于_____.
16.抛物线y=﹣x2+bx+c的部分图象如图所示,若y>0,则x的取值范围是_____.
17.二次函数的最大值是__________.
18.菱形ABCD中,若周长是20cm,对角线AC=6cm,则对角线BD=_____cm.
三、解答题(共66分)
19.(10分)如图,⊙O是△ABC的外接圆,AB为直径,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC分别交AC的延长线于点E,交AB的延长线于点F.
(1)求证:EF是⊙O的切线;
(2)若AC=8,CE=4,求弧BD的长.(结果保留π)
20.(6分)如图,在四边形中,将绕点顺时针旋转一定角度后,点的对应点恰好与点重合,得到.
(1)求证:;
(2)若,试求四边形的对角线的长.
21.(6分)如图,在中,,点为上一点且与不重合.,交于.
(1)求证:;
(2)设,求关于的函数表达式;
(3)当时,直接写出_________.
22.(8分)如图,中,顶点的坐标是,轴,交轴于点,顶点的纵坐标是,的面积是.反比例函数的图象经过点和,求反比例函数的表达式.
23.(8分)网络销售是一种重要的销售方式.某农贸公司新开设了一家网店,销售当地农产品.其中一种当地特产在网上试销售,其成本为每千克2元.公司在试销售期间,调查发现,每天销售量与销售单价(元)满足如图所示的函数关系(其中).
(1)若,求与之间的函数关系式;
(2)销售单价为多少元时,每天的销售利润最大?最大利润是多少元?
24.(8分)如图,方格纸中的每个小方格都是边长为 1 个单位的正方形,建立平面直角坐标系后, 的顶点均在格点上,点 的坐标为.
(1)画出关于 轴对称的;写出顶点的坐标( , ),( , ).
(2)画出将绕原点 按顺时针旋转 所得的;写出顶点的坐标( , ),( , ),( , ).
(3)与成中心对称图形吗?若成中心对称图形,写出对称中心的坐标.
25.(10分)制作一种产品,需先将材料加热达到60 ℃后,再进行操作.设该材料温度为y(℃),从加热开始计算的时间为x(分钟).据了解,设该材料加热时,温度y与时间x成一次函数关系;停止加热进行操作时,温度y与时间x成反比例关系(如图).已知该材料在操作加工前的温度为15 ℃,加热5分钟后温度达到60 ℃.
(1)求将材料加热时,y与x的函数关系式;
(2)求停止加热进行操作时,y与x的函数关系式;
(3)根据工艺要求,当材料的温度低于15℃时,须停止操作,那么操作时间是多少?
26.(10分)全国第二届青年运动会是山西省历史上第一次举办的大型综合性运动会,太原作为主赛区,新建了很多场馆,其中在汾河东岸落成了太原水上运动中心,它的终点塔及媒体中心是一个以“大帆船”造型(如图1),外观极具创新,这里主要承办赛艇、皮划艇、龙舟等项目的比赛.“青春”数学兴趣小组为了测量“大帆船”AB的长度,他们站在汾河西岸,在与AB平行的直线l上取了两个点C、D,测得CD=40m,∠CDA=110°,∠ACB=18.5°,∠BCD=16.5°,如图1.请根据测量结果计算“大帆船”AB的长度.(结果精确到0.1m,参考数据:sin16.5°≈0.45,tan16.5°≈0.50,≈1.41,≈1.73)
参考答案
一、选择题(每小题3分,共30分)
1、C
2、A
3、B
4、D
5、D
6、A
7、A
8、C
9、A
10、C
二、填空题(每小题3分,共24分)
11、
12、
13、
14、1
15、.
16、-3<x<1
17、1
18、1
三、解答题(共66分)
19、(1)见解析;(2)
20、(1)见解析;(2).
21、(1)详见解析;(2);(3)1
22、.
23、(1);(2)当时,每天的销售利润最大,最大是3200元.
24、(1)作图见解析,;(2)作图见解析,;(3)成中心对称,对称中心坐标是
25、(1)y=9x+15;(2)y=;(3)15分钟
26、 “大帆船”AB的长度约为94.8m
相关试卷
这是一份2023-2024学年广东省东莞市石碣丽江学校数学九上期末统考试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,如图,的直径,弦于,若将抛物线y=2,下列实数中,有理数是,对于二次函数y=2等内容,欢迎下载使用。
这是一份2023-2024学年广东省东莞市横沥莞盛学校九上数学期末综合测试模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,估计 ,的值应在,-2019的相反数是等内容,欢迎下载使用。
这是一份2023-2024学年广东省东莞市粤华学校八上数学期末统考模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,若分式方程有增根,a的值为,下列各数中,无理数是,若有一个外角是钝角,则一定是等内容,欢迎下载使用。