2023-2024学年广东省东莞市虎门捷胜学校数学九年级第一学期期末统考试题含答案
展开
这是一份2023-2024学年广东省东莞市虎门捷胜学校数学九年级第一学期期末统考试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题3分,共30分)
1.下列方程中,关于x的一元二次方程是( )
A.2x﹣3=xB.2x+3y=5C.2x﹣x2=1D.
2.如图,正方形的边长为,点在边上.四边形也为正方形,设的面积为,则( )
A.S=2B.S=2.4
C.S=4D.S与BE长度有关
3.如图,正六边形ABCDEF的半径OA=OD=2,则点B关于原点O的对称点坐标为( )
A.(1,﹣)B.(﹣1,)C.(﹣,1)D.(,﹣1)
4.如图,学校的保管室有一架5m长的梯子斜靠在墙上,此时梯子与地面所成的角为45°如果梯子底端O固定不变,顶端靠到对面墙上,此时梯子与地面所成的角为60°,则此保管室的宽度AB为( )
A.(+1 ) mB.(+3 ) mC.( ) mD.(+1 ) m
5.如图,已知正五边形内接于,连结,则的度数是( )
A.B.C.D.
6.下面四个图形分别是绿色食品、节水、节能和回收标志,在这四个标志中,是中心对称图形的是( )
A.B.C.D.
7.在Rt△ABC中,∠C =90°,sinA=,则csB的值等于( )
A.B.C.D.
8.如图,在平面直角坐标系中,菱形的边在轴的正半轴上,反比例函数的图象经过对角线的中点和顶点.若菱形的面积为12,则的值为( ).
A.6B.5C.4D.3
9.如图,等腰与等腰是以点为位似中心的位似图形,位似比为,则点的坐标是( )
A.B.C.D.
10.如图,在纸上剪一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型,若圆的半径r=1,扇形的半径为R,扇形的圆心角等于90°,则R的值是( )
A.R=2B.R=3C.R=4D.R=5
二、填空题(每小题3分,共24分)
11.用长的铁丝做一个长方形框架,设长方形的长为,面积为,则关于的函数关系式为__________.
12.中, 如果锐角满足,则_________度
13.在平面坐标系中,第1个正方形的位置如图所示,点的坐标为,点的坐标为,延长交轴于点,作第2个正方形,延长交轴于点;作第3个正方形,…按这样的规律进行下去,第5个正方形的边长为__________.
14.数学学习应经历“观察、实验、猜想、证明”等过程.下表是几位数学家“抛掷硬币”的实验数据:
请根据以上实验数据,估计硬币出现“正面朝上”的概率为__________.(精确到0.1)
15.已知线段c是线段、的比例中项,且,,则线段c的长度为______.
16.如图,已知等边的边长为,,分别为,上的两个动点,且,连接,交于点,则的最小值_______.
17.如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=6,AB=10,OD⊥BC于点D,则OD的长为______.
18.△ABC与△DEF的相似比为1:4,则△ABC与△DEF的周长比为 .
三、解答题(共66分)
19.(10分)如图,在中,,为上一点,,.
(1)求的长;(2)求的值.
20.(6分)某软件开发公司开发了A、B两种软件,每种软件成本均为1400元,售价分别为2000元、1800元,这两种软件每天的销售额共为112000元,总利润为28000元.
(1)该店每天销售这两种软件共多少个?
(2)根据市场行情,公司拟对A种软件降价销售,同时提高B种软件价格.此时发现,A种软件每降50元可多卖1件,B种软件每提高50元就少卖1件.如果这两种软件每天销售总件数不变,那么这两种软件一天的总利润最多是多少?
21.(6分)如图,在△ABC中,∠C=90°,AB的垂直平分线分别交边AB、BC于点D、E,连结AE.
(1)如果∠B=25°,求∠CAE的度数;
(2)如果CE=2,,求的值.
22.(8分)如图,在Rt△ABC中,∠C=90°,BC=5,AC=12,求∠A的正弦值、余弦值和正切值.
23.(8分)已知抛物线经过点和 ,与轴交于另一点,顶点为.
(1)求抛物线的解析式,并写出点的坐标;
(2)如图,点分别在线段上(点不与重合),且,则能否为等腰三角形?若能,求出的长;若不能,请说明理由;
(3)若点在抛物线上,且,试确定满足条件的点的个数.
24.(8分)如图,小明在地面A处利用测角仪观测气球C的仰角为37°,然后他沿正对气球方向前进了40m到达地面B处,此时观测气球的仰角为45°.求气球的高度是多少?参考数据:sin37°≈0.60,cs37°≈0.80,tan37°≈0.75
25.(10分)如图,在单位长度为1的正方形网格中,一段圆弧经过网格的交点A、B、C.
(1)请完成如下操作:
①以点O为原点、竖直和水平方向为轴、网格边长为单位长,建立平面直角坐标系;
②根据图形提供的信息,标出该圆弧所在圆的圆心D,并连接AD、CD.
(2)请在(1)的基础上,完成下列填空:
①写出点的坐标:C ;D( );
②⊙D的半径= (结果保留根号);
③若扇形ADC是一个圆锥的侧面展开图,则该圆锥的底面的面积为 ;(结果保留π)
④若E(7,0),试判断直线EC与⊙D的位置关系,并说明你的理由.
26.(10分)一只不透明的袋子中装有标号分别为1、2、3、4、5的5个小球,这些球除标号外都相同.
(1)从袋中任意摸出一个球,摸到标号为偶数的概率是 ;
(2)先从袋中任意摸出一个球后不放回,将球上的标号作为十位上的数字,再从袋中任意摸出一个球,将球上的标号作为个位上的数字,请用画树状图或列表的方法求组成的两位数是奇数的概率.
参考答案
一、选择题(每小题3分,共30分)
1、C
2、A
3、D
4、A
5、C
6、D
7、B
8、C
9、A
10、C
二、填空题(每小题3分,共24分)
11、或
12、
13、
14、0.1
15、6
16、
17、1
18、1:1.
三、解答题(共66分)
19、(1);(2).
20、(1)60;(2)1
21、(1)∠CAE=40°;(2)
22、sinA=,csA=,tanA=.
23、(1);(2)可能,的长为或;(3)当时,满足条件的点的个数有个,当时,满足条件的点的个数有个,当时,满足条件的点的个数有个(此时点在的左侧).
24、120m
25、(1)①答案见解析;②答案见解析;(2)①C(6,2); D(2,0);②;③;④相切,理由见解析.
26、(1);(2)组成的两位数是奇数的概率为.
实验者
棣莫弗
蒲丰
德·摩根
费勒
皮尔逊
罗曼诺夫斯基
掷币次数
2048
4040
6140
10000
36000
80640
出现“正面朝上”的次数
1061
2048
3109
4979
18031
39699
频率
0.518
0.507
0.506
0.498
0.501
0.492
相关试卷
这是一份广东省东莞市捷胜中学2023-2024学年数学九年级第一学期期末质量检测模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
这是一份2023-2024学年广东省东莞市虎门捷胜学校七年级(上)期末数学试卷(含解析),共14页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
这是一份2023-2024学年广东省东莞市虎门汇英学校数学九上期末统考试题含答案,共7页。试卷主要包含了抛物线y=,在平面直角坐标系中,点P,若n<+1<n+1,则整数n为等内容,欢迎下载使用。