2023-2024学年广东省云浮市郁南县九年级数学第一学期期末经典试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题3分,共30分)
1.在一个不透明的口袋中装有个完全相同的小球,把它们分别标号为,从中随机摸出一个小球,其标号小于的概率为( )
A.B.C.D.
2.若,则的值等于( )
A.B.C.D.
3.如图,在△ABC中E、F分别是AB、AC上的点,EF∥BC,且,若△AEF的面积为2,则四边形EBCF的面积为 ( )
A.4B.6C.16D.18
4.如图是二次函数y=ax1+bx+c(a≠0)图象的一部分,对称轴是直线x=﹣1.关于下列结论:①ab<0;②b1﹣4ac>0;③9a﹣3b+c>0;④b﹣4a=0;⑤方程ax1+bx=0的两个根为x1=0,x1=﹣4,其中正确的结论有( )
A.1个B.3个C.4个D.5个
5.已知关于的一元二次方程的两根为,,则一元二次方程的根为( )
A.0,4B.-3,5C.-2,4D.-3,1
6.如图是某零件的模型,则它的左视图为( )
A.B.C.D.
7.如图,是⊙的直径,弦⊥于点,,则( )
A.B.C.D.
8.下列事件是必然事件的是( )
A.打开电视机,正在播放篮球比赛B.守株待兔
C.明天是晴天D.在只装有5个红球的袋中摸出1球,是红球.
9.下列各数中是无理数的是( )
A.0B.C.D.0.5
10.菱形的两条对角线长分别为6,8,则它的周长是( )
A.5B.10C.20D.24
二、填空题(每小题3分,共24分)
11.已知是一元二次方程的一个根,则的值是______.
12.分解因式:___.
13.如图,用一段长为30米的篱笆围成一个一边靠墙(墙的长度不限)的矩形菜园ABCD,设AB的长为x米,则菜园的面积y(平方米)与x(米)的函数表达式为________.(不要求写出自变量x的取值范围)
14.如图,圆心都在x轴正半轴上的半圆O1,半圆O2,…,半圆On与直线l相切.设半圆O1,半圆O2,…,半圆On的半径分别是r1,r2,…,rn,则当直线l与x轴所成锐角为30°,且r1=1时,r2018=________.
15.如图,在正方形ABCD的外侧,作等边△ABE,则∠BFC=_________°
16.我国古代数学著作《九章算术》中记载了一个问题:“今有邑方不知大小,各开中门,出北门三十步有木,出西门七百五十步见木,问:邑方几何?”.其大意是:如图,一座正方形城池,A为北门中点,从点A往正北方向走30步到B处有一树木,C为西门中点,从点C往正西方向走750步到D处正好看到B处的树木,则正方形城池的边长为_____步.
17.如图,E,F分别为矩形ABCD的边AD,BC的中点,且矩形ABCD与矩形EABF相似,AB=1,则BC的长为_____.
18.若关于x的一元二次方程(k﹣1)x2+4x+1=0有实数根,则k的取值范围是_____.
三、解答题(共66分)
19.(10分)综合与实践
问题情境
数学课上,李老师提出了这样一个问题:如图1,点是正方形内一点,,,.你能求出的度数吗?
(1)小敏与同桌小聪通过观察、思考、讨论后,得出了如下思路:
思路一:将绕点逆时针旋转,得到,连接,求出的度数.
思路二:将绕点顺时针旋转,得到,连接,求出的度数.
请参考以上思路,任选一种写出完整的解答过程.
类比探究
(2)如图2,若点是正方形外一点,,,,求的度数.
拓展应用
(3)如图3,在边长为的等边三角形内有一点,,,则的面积是______.
20.(6分)若x1、x2是关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根,则方程的两个根x1、x2和系数a、b、c有如下关系:,.我们把它们称为根与系数关系定理.
如果设二次函数y=ax2+bx+c(a≠0)的图象与x轴的两个交点为A(x1,0),B(x2,0).利用根与系数关系定理我们又可以得到A、B两个交点间的距离为:AB=====
请你参考以上定理和结论,解答下列问题:
设二次函数y=ax2+bx+c(a≠0)的图象与x轴的两个交点为A(x1,0),B(x2,0),抛物线的顶点为C,显然△ABC为等腰三角形.
(1)当△ABC为等腰直角三角形时,直接写出b2-4ac的值;
(2)当△ABC为等腰三角形,且∠ACB=120°时,直接写出b2-4ac的值;
(3)设抛物线y=x2+mx+5与x轴的两个交点为A、B,顶点为C,且∠ACB=90°,试问如何平移此抛物线,才能使∠ACB=120°.
21.(6分)如图,点A的坐标为(0,﹣2),点B的坐标为(﹣3,2),点C的坐标为(﹣3,﹣1).
(1)请在直角坐标系中画出△ABC绕着点A顺时针旋转90°后的图形△AB′C′;
(2)直接写出:点B′的坐标 ,点C′的坐标 .
22.(8分) “万州古红桔”原名“万县红桔”,古称丹桔(以下简称为红桔),种植距今至少已有一千多年的历史,“玫瑰香橙”(源自意大利西西里岛塔罗科血橙,以下简称香橙)现已是万州柑橘发展的主推品种之一.某水果店老板在2017年11月份用15200元购进了400千克红桔和600千克香橙,已知香橙的每千克进价比红桔的每千克进价2倍还多4元.
(1)求11月份这两种水果的进价分别为每千克多少元?
(2)时下正值柑橘销售旺季,水果店老板决定在12月份继续购进这两种水果,但进入12月份,由于柑橘的大量上市,红桔和香橙的进价都有大幅下滑,红桔每千克的进价在11月份的基础上下降了%,香橙每千克的进价在11月份的基础上下降了%,由于红桔和“玫瑰香橙”都深受库区人民欢迎,实际水果店老板在12月份购进的红桔数量比11月份增加了%,香橙购进的数量比11月份增加了2%,结果12月份所购进的这两种柑橘的总价与11月份所购进的这两种柑橘的总价相同,求的值.
23.(8分)如图,在平面直角坐标系中,已知是等边三角形,点的坐标是,点在第一象限,的平分线交轴于点,把绕着点按逆时针方向旋转,使边与重合,得到,连接.求:的长及点的坐标.
24.(8分)在二次函数的学习中,教材有如下内容:
小聪和小明通过例题的学习,体会到利用函数图象可以求出方程的近似解.于是他们尝试利用图象法探究方程的近似解,做法如下:
请你选择小聪或小明的做法,求出方程的近似解(精确到0.1).
25.(10分)如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BC相交于点N.连接BM,DN.
(1)求证:四边形BMDN是菱形;
(2)若AB=4,AD=8,求MD的长.
26.(10分)某校为了弘扬中华传统文化,了解学生整体阅读能力,组织全校的1000名学生进行一次阅读理解大赛.从中抽取部分学生的成绩进行统计分析,根据测试成绩绘制了频数分布表和频数分布直方图:
(1)频数分布表中的 ;
(2)将上面的频数分布直方图补充完整;
(3)如果成绩达到90及90分以上者为优秀,可推荐参加决赛,估计该校进入决赛的学生大约有 人.
参考答案
一、选择题(每小题3分,共30分)
1、C
2、B
3、C
4、C
5、B
6、D
7、A
8、D
9、C
10、C
二、填空题(每小题3分,共24分)
11、0
12、.
13、y=-x2+15x
14、1
15、1
16、1.
17、
18、k≤5且k≠1.
三、解答题(共66分)
19、 (1)∠APB=135°,(2)∠APB=45°;(3).
20、 (1)4;(2);(3)抛物线向上平移个单位后,向左或向右平移任意个单位都能使得度数由90°变为120°.
21、 (1)见解析;(2) (4,1),(1,1).
22、(1)11月份红桔的进价为每千克8元,香橙的进价为每千克20元;(2)m的值为49.1.
23、,点的坐标为.
24、(1)详见解析, ,,.(2)详见解析, ,,.
25、(1)证明见解析;(2)MD长为1.
26、(1)14;(2)补图见解析;(3)1.
分组/分
频数
频率
50≤x<60
6
0.12
60≤x<70
0.28
70≤x<80
16
0.32
80≤x<90
10
0.20
90≤x≤100
4
0.08
2023-2024学年广东省郁南县九年级数学第一学期期末经典模拟试题含答案: 这是一份2023-2024学年广东省郁南县九年级数学第一学期期末经典模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,如图,空心圆柱的俯视图是等内容,欢迎下载使用。
广东省云浮市2023-2024学年数学九年级第一学期期末联考模拟试题含答案: 这是一份广东省云浮市2023-2024学年数学九年级第一学期期末联考模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔,计算等内容,欢迎下载使用。
广东省郁南县2023-2024学年八上数学期末经典试题含答案: 这是一份广东省郁南县2023-2024学年八上数学期末经典试题含答案,共8页。