2023-2024学年张家界市重点中学九年级数学第一学期期末质量跟踪监视模拟试题含答案
展开
这是一份2023-2024学年张家界市重点中学九年级数学第一学期期末质量跟踪监视模拟试题含答案,共8页。试卷主要包含了下列说法等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题3分,共30分)
1.如图,一段抛物线y=﹣x2+4(﹣2≤x≤2)为C1,与x轴交于A0,A1两点,顶点为D1;将C1绕点A1旋转180°得到C2,顶点为D2;C1与C2组成一个新的图象,垂直于y轴的直线l与新图象交于点P1(x1,y1),P2(x2,y2),与线段D1D2交于点P3(x3,y3),设x1,x2,x3均为正数,t=x1+x2+x3,则t的取值范围是( )
A.6<t≤8B.6≤t≤8C.10<t≤12D.10≤t≤12
2.如图,、是的两条弦,若,则的度数为( )
A.B.C.D.
3.一元二次方程3x2﹣x﹣2=0的二次项系数是3,它的一次项系数是( )
A.﹣1B.﹣2C.1D.0
4.下列说法:①概率为0的事件不一定是不可能事件;②试验次数越多,某情况发生的频率越接近概率;③事件发生的概率与实验次数无关;④在抛掷图钉的试验中针尖朝上的概率为,表示3次这样的试验必有1次针尖朝上.其中正确的是( )
A.①②B.②③C.①③D.①④
5.如图,AD是△ABC的中线,点E在AD上,AD=4DE,连接BE并延长交AC于点F,则AF:FC的值是( )
A.3:2B.4:3C.2:1D.2:3
6.若是方程的一个根.则代数式的值是( )
A.B.C.D.
7.如图,是的直径,切于点A,若,则的度数为( )
A.40°B.45°C.60°D.70°
8.在同一时刻,身高1.5米的小红在阳光下的影长2米,则影长为6米的大树的高是( )
A.4.5米B.8米C.5米D.5.5米
9.某专卖店专营某品牌女鞋,店主对上一周中不同尺码的鞋子销售情况统计如表:
该店主决定本周进货时,增加一些37码的女鞋,影响该店主决策的统计量是( )
A.平均数B.方差C.众数D.中位数
10.如图,四边形ABCD是⊙O的内接四边形,点E在边CD的延长线上,若∠ABC=110°,则∠ADE的度数为( )
A.55°B.70°C.90°D.110°
二、填空题(每小题3分,共24分)
11.二次函数的部分图像如图所示,要使函数值,则自变量的取值范围是_______.
12.在Rt△ABC中,斜边AB=4,∠B=60°,将△ABC绕点B旋转60°,顶点C运动的路线长是 (结果保留π).
13.某水果公司以1.1元/千克的成本价购进苹果.公司想知道苹果的损坏率,从所有苹果中随机抽取若干进行统计,部分数据如下:
估计这批苹果损坏的概率为______精确到0.1),据此,若公司希望这批苹果能获得利润13000元,则销售时(去掉损坏的苹果)售价应至少定为______元/千克.
14.只请写出一个开口向下,并且与轴有一个公共点的抛物线的解析式__________.
15.抛物线的顶点坐标为______.
16.如图,某景区想在一个长,宽的矩形湖面上种植荷花,为了便于游客观赏,准备沿平行于湖面两边的纵、横方向各修建一座小桥(桥下不种植荷花).已知修建的纵向小桥的宽度是横向小桥宽度的2倍,荷花的种植面积为,如果横向小桥的宽为,那么可列出关于的方程为__________.(方程不用整理)
17.已知一次函数y1=x+m的图象如图所示,反比例函数y2=,当x>0时,y2随x的增大而_____(填“增大”或“减小”).
18.某校欲从初三级部3名女生,2名男生中任选两名学生代表学校参加全市举办的“中国梦•青春梦”演讲比赛,则恰好选中一男一女的概率是_____.
三、解答题(共66分)
19.(10分)江华瑶族自治县香草源景区2016年旅游收入500万元,由于政府的重视和开发,近两年旅游收入逐年递增,到今年2018年收入已达720万元.
(1)求这两年香草源旅游收入的年平均增长率.
(2)如果香草源旅游景区的收入一直保持这样的平均年增长率,从2018年算起,请直接写出n年后的收入表达式.
20.(6分)计算:(1)
(2)
21.(6分)在Rt△ABC中,∠C=90°,AC=,BC=.解这个直角三角形.
22.(8分)已知:如图,是正方形的对角线上的两点,且.
求证:四边形是菱形.
23.(8分)对于平面直角坐标系xOy中的点P和图形G,给出如下定义:将点P沿向右或向上的方向平移一次,平移距离为d(d>0)个长度单位,平移后的点记为P′,若点P′在图形G上,则称点P为图形G的“达成点”.特别地,当点P在图形G上时,点P是图形G的“达成点”.例如,点P(﹣1,0)是直线y=x的“达成点”.
已知⊙O的半径为1,直线l:y=﹣x+b.
(1)当b=﹣3时,
①在O(0,0),A(﹣4,1),B(﹣4,﹣1)三点中,是直线l的“达成点”的是:_____;
②若直线l上的点M(m,n)是⊙O的“达成点”,求m的取值范围;
(2)点P在直线l上,且点P是⊙O的“达成点”.若所有满足条件的点P构成一条长度不为0的线段,请直接写出b的取值范围.
24.(8分)如图,某市郊外景区内一条笔直的公路经过、两个景点,景区管委会又开发了风景优美的景点.经测量,位于的北偏东的方向上,的北偏东的方向上,且.
(1)求景点与的距离.
(2)求景点与的距离.(结果保留根号)
25.(10分)如图,在平面直角坐标系xOy中,直线y=x﹣2与反比例函数y=(k为常数,k≠0)的图象在第一象限内交于点A,点A的横坐标为1.
(1)求反比例函数的表达式;
(2)设直线y=x﹣2与y轴交于点C,过点A作AE⊥x轴于点E,连接OA,CE.求四边形OCEA的面积.
26.(10分)如图,已知一次函数分别交、轴于、两点,抛物线经过、两点,与轴的另一交点为.
(1)求、的值及点的坐标;
(2)动点从点出发,以每秒1个单位长度的速度向点运动,过作轴的垂线交抛物线于点,交线段于点.设运动时间为秒.
①当为何值时,线段长度最大,最大值是多少?(如图1)
②过点作,垂足为,连结,若与相似,求的值(如图2)
参考答案
一、选择题(每小题3分,共30分)
1、D
2、C
3、A
4、B
5、A
6、C
7、A
8、A
9、C
10、D
二、填空题(每小题3分,共24分)
11、
12、.
13、0.2 3
14、
15、
16、
17、减小.
18、
三、解答题(共66分)
19、(1)这两年香草源旅游收入的年平均增长率为20﹪;(2)
20、(1);(2)
21、,,.
22、见解析
23、(1)①A,B;②﹣4≤m≤﹣2或﹣1≤m≤1;(2)﹣2≤b<.
24、 (1)BC=10km;(2)AC=10km.
25、(1)y=;(2)2.
26、(1)2,3,;(2)①时,长度最大,最大值为;②或
尺码
35
36
37
38
39
平均每天销售数量(双)
2
8
10
6
2
苹果损坏的频率
0.106
0.097
0.101
0.098
0.099
0.101
相关试卷
这是一份宁德市重点中学2023-2024学年数学九年级第一学期期末质量跟踪监视模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,已知关于的方程个,cs60°的值等于等内容,欢迎下载使用。
这是一份2023-2024学年眉山市重点中学九年级数学第一学期期末质量跟踪监视模拟试题含答案,共7页。试卷主要包含了反比例函数的图象分布的象限是,要使有意义,则x的取值范围为,下列事件为必然事件的是等内容,欢迎下载使用。
这是一份濮阳市重点中学2023-2024学年九年级数学第一学期期末质量跟踪监视模拟试题含答案,共7页。试卷主要包含了在平面直角坐标系中,点等内容,欢迎下载使用。