2023-2024学年江苏省扬州市高邮市八校联考九年级数学第一学期期末质量跟踪监视模拟试题含答案
展开学校_______ 年级_______ 姓名_______
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题3分,共30分)
1.如图,AB为⊙O的直径,CD为⊙O的弦,∠ACD=40°,则∠BAD的大小为( )
A.60ºB.30ºC.45ºD.50º
2.二次函数的图象如图所示,若关于的一元二次方程有实数根,则的最大值为( )
A.-7B.7C.-10D.10
3.下列抛物线中,其顶点在反比例函数y=的图象上的是( )
A.y=(x﹣4)2+3B.y=(x﹣4)2﹣3C.y=(x+2)2+1D.y=(x+2)2﹣1
4.不解方程,则一元二次方程的根的情况是( )
A.有两个相等的实数根B.没有实数根
C.有两个不相等的实数根D.以上都不对
5.随机抛掷一枚质地均匀的骰子一次,下列事件中,概率最大的是( )
A.朝上一面的数字恰好是6B.朝上一面的数字是2的整数倍
C.朝上一面的数字是3的整数倍D.朝上一面的数字不小于2
6.下列事件中,属于必然事件的是( )
A.明天我市下雨
B.抛一枚硬币,正面朝上
C.走出校门,看到的第一辆汽车的牌照的末位数字是偶数
D.一个口袋中装有2个红球和一个白球,从中摸出2个球,其中有红球
7.如图是某个几何体的三视图,该几何体是( )
A.长方体B.圆锥C.三棱柱D.圆柱
8.经过某十字路口的汽车,可能直行,也可能向左转或向右转,如果这三种可能性大小相同,则两辆汽车经过这个十字路口时,一辆向右转,一辆向左转的概率是( )
A.B.C.D.
9.已知反比例函数的图象经过点,则这个函数的图象位于( )
A.第二、三象限B.第一、三象限C.第三、四象限D.第二、四象限
10.已知两圆的半径分别是2和4,圆心距是3,那么这两圆的位置是( )
A.内含B.内切C.相交D.外切
二、填空题(每小题3分,共24分)
11.如图,在四边形中,,,,点为边上一点,连接.,与交于点,且,若,,则的长为_______________.
12.关于x的方程的根为______.
13.已知在中,,,,那么_____________.
14.小刚和小亮用图中的转盘做“配紫色”游戏:分别转动两个转盘各一次,若其中的一个转盘转出了红色,另一个转出了蓝色,则可配成紫色,此时小刚赢,否则小亮赢.若用P1表示小刚赢的概率,用P2 表示小亮赢概率,则两人赢的概率P1________P2(填写>,=或<)
15.在反比例函数y=﹣的图象上有两点(﹣,y1),(﹣1,y1),则y1_____y1.(填>或<)
16.如图,内接于⊙O,,是⊙O上与点关于圆心成中心对称的点,是边上一点,连结.已知,,是线段上一动点,连结并延长交四边形的一边于点,且满足,则的值为_______________.
17.如图,将的斜边AB绕点A顺时针旋转得到AE,直角边AC绕点A逆时针旋转得到AF,连结EF.若,,且,则_____.
18.某班级准备举办“迎鼠年,闹新春”的民俗知识竞答活动,计划A、B两组对抗赛方式进行,实际报名后,A组有男生3人,女生2人,B组有男生1人,女生4人,若从两组中各随机抽取1人,则抽取到的两人刚好是1男1女的概率是__________.
三、解答题(共66分)
19.(10分)太阳能光伏建筑是现代绿色环保建筑之一,老张准备把自家屋顶改建成光伏瓦面,改建前屋顶截面△ABC如图2所示,BC=10米,∠ABC=∠ACB=36°,改建后顶点D在BA的延长线上,且∠BDC=90°,求改建后南屋面边沿增加部分AD的长.(结果精确到0.1米)
(参考数据:sin18°≈0.31,cs18°≈0.1.tan18°≈0.32,sin36°≈0.2.cs36°≈0.81,tan36°≈0.73)
20.(6分)某商品市场销售抢手,其进价为每件80元,售价为每件130元,每个月可卖出500件;据市场调查,若每件商品的售价每上涨1元,则每个月少卖2件(每件售价不能高于240元).设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.
(1)求y与x的函数关系式,并直接写出自变量x的取值范围;
(2)每件商品的涨价多少元时,每个月可获得最大利润?最大的月利润是多少元?
(3)每件商品的涨价多少元时,每个月的利润恰为40000元?根据以上结论,请你直接写出x在什么范围时,每个月的利润不低于40000元?
21.(6分)定义:在平面直角坐标系中,抛物线()与直线交于点、(点在点右边),将抛物线沿直线翻折,翻折前后两抛物线的顶点分别为点、,我们将两抛物线之间形成的封闭图形称为惊喜线,四边形称为惊喜四边形,对角线与之比称为惊喜度(Degree f surprise),记作.
(1)如图(1)抛物线沿直线翻折后得到惊喜线.则点坐标 ,点坐标 ,惊喜四边形属于所学过的哪种特殊平行四边形? ,为 .
(2)如果抛物线()沿直线翻折后所得惊喜线的惊喜度为1,求的值.
(3)如果抛物线沿直线翻折后所得的惊喜线在时,其最高点的纵坐标为16,求的值并直接写出惊喜度.
22.(8分)如图,在正方形ABCD中, ,点E为对角线AC上一动点(点E不与点A、C重合),连接DE,过点E作,交BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.
(1)求AC的长;
(2)求证矩形DEFG是正方形;
(3)探究:的值是否为定值?若是,请求出这个定值;若不是,请说明理由.
23.(8分)用适当的方法解下列方程:
(1)
(2)
24.(8分)如图,取△ABC的边AB的中点O,以O为圆心AB为半径作⊙O交BC于点D,过点D作⊙O的切线DE,若DE⊥AC,垂足为点E.
(1)求证:△ABC是等腰三角形;
(2)若DE=1,∠BAC=120°,则的长为 .
25.(10分)如图,利用的墙角修建一个梯形的储料场,其中,并使,新建墙上预留一长为1米的门.如果新建墙总长为15米,那么怎样修建才能使储料场的面积最大?最大面积多少平方米?
26.(10分)(1)计算:
(2)解方程:
参考答案
一、选择题(每小题3分,共30分)
1、D
2、B
3、A
4、C
5、D
6、D
7、D
8、B
9、D
10、C
二、填空题(每小题3分,共24分)
11、
12、x1=0,x2=
13、1
14、<
15、>
16、1或
17、
18、
三、解答题(共66分)
19、1.9米
20、 (1) y=﹣2x2+400x+25000, 0<x≤1,且x为正整数;(2) 件商品的涨价100元时,每个月可获得最大利润,最大的月利润是45000元;(3) 每件商品的涨价为50元时,每个月的利润恰为40000元;当50≤x≤1,且x为正整数时,每个月的利润不低于40000元
21、(1);;菱形;2;(2);(3),或,.
22、(1)2;(2)见解析;(3)是,定值为8
23、(1), ;(2) ,
24、(1)证明见解析;(2)
25、当与垂直的墙长为米时,储料场面积最大值为平方米
26、(1);(2)x 1=1,.
江苏省淮安市八校联考2023-2024学年九上数学期末质量跟踪监视试题含答案: 这是一份江苏省淮安市八校联考2023-2024学年九上数学期末质量跟踪监视试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,下列说法错误的是等内容,欢迎下载使用。
2023-2024学年江苏省苏州姑苏区五校联考数学九年级第一学期期末质量跟踪监视模拟试题含答案: 这是一份2023-2024学年江苏省苏州姑苏区五校联考数学九年级第一学期期末质量跟踪监视模拟试题含答案,共8页。试卷主要包含了下列说法等内容,欢迎下载使用。
2023-2024学年江苏省扬州市名校九年级数学第一学期期末质量跟踪监视模拟试题含答案: 这是一份2023-2024学年江苏省扬州市名校九年级数学第一学期期末质量跟踪监视模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,某车的刹车距离y等内容,欢迎下载使用。