2023-2024学年江苏省镇江市五校数学九上期末达标检测试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)
1.抛物线y =ax2+bx+c图像如图所示,则一次函数y =-bx-4ac+b2与反比例函数在同一坐标系内的图像大致为( )
A.B.C.D.
2.如图,四边形ABCD内接于⊙O,连接AC,BD,点E在AD的延长线上,( )
A.若DC平分∠BDE,则AB=BC
B.若AC平分∠BCD,则
C.若AC⊥BD,BD为直径,则
D.若AC⊥BD,AC为直径,则
3.如图,现有一个圆心角为90°,半径为8cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为( )
A.2cmB.3cmC.4cmD.1cm
4.方程x2﹣9=0的解是( )
A.3B.±3C.4.5D.±4.5
5.今年来某县加大了对教育经费的投入,2013年投入2500万元,2015年投入3500万元.假设该县投入教育经费的年平均增长率为x,根据题意列方程,则下列方程正确的是( )
A.2500x=3500
B.2500(1+x)=3500
C.2500(1+x%)=3500
D.2500(1+x)+2500(1+x)=3500
6.若整数a使关于x的分式方程=2有整数解,且使关于x的不等式组至少有4个整数解,则满足条件的所有整数a的和是( )
A.﹣14B.﹣17C.﹣20D.﹣23
7.二次函数与的图象与x轴有交点,则k的取值范围是
A.B.且C.D.且
8.向空中发射一枚炮弹,第秒时的高度为米,且高度与时间的关系为,若此炮弹在第秒与第秒时的高度相等,则在下列时间中炮弹所在高度最高的是( )
A.第秒B.第秒C.第秒D.第秒
9.如图,E是平行四边形ABCD的对角线BD上的点,连接AE并延长交BC于点F,且,则的值是( )
A.B.C.D.
10.如图,在边长为4的菱形ABCD中,∠ABC=120°,对角线AC与BD相交于点O,以点O为圆心的圆与菱形ABCD的四边都相切,则图中阴影区域的面积为( )
A.B.C.D.
二、填空题(每小题3分,共24分)
11.若,则_______.
12.抛物线y=ax2-4ax+4(a≠0)与y轴交于点A.过点B(0,3)作y轴的垂线l,若抛物线y=ax2-4ax+4(a≠0)与直线l有两个交点,设其中靠近y轴的交点的横坐标为m,且│m│<1,则a的取值范围是______.
13.如图,点P是反比例函数y=(k≠0)的图象上任意一点,过点P作PM⊥x轴,垂足为M.若△POM的面积等于2,则k的值等于_
14.将抛物线向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线解析式为______.
15.如图,抛物线y=﹣2x2+2与x轴交于点A、B,其顶点为E.把这条抛物线在x轴及其上方的部分记为C1,将C1向右平移得到C2,C2与x轴交于点B、D,C2的顶点为F,连结EF.则图中阴影部分图形的面积为______.
16.已知一条抛物线,以下说法:①对称轴为,当时,随的增大而增大;②;③顶点坐标为;④开口向上.其中正确的是______.(只填序号)
17.一个盒子中装有个红球,个白球和个蓝球,这些球除了颜色外都相同,从中随机摸出两个球,能配成紫色的概率为_____.
18.如图,在以A为直角顶点的等腰直角三角形纸片ABC中,将B角折起,使点B落在AC边上的点D(不与点A,C重合)处,折痕是EF.
如图1,当CD=AC时,tanα1=;
如图2,当CD=AC时,tanα2=;
如图3,当CD=AC时,tanα3=;
……
依此类推,当CD=AC(n为正整数)时,tanαn=_____.
三、解答题(共66分)
19.(10分)(1)解方程.
(2)计算:.
20.(6分)如图,顶点为A(,1)的抛物线经过坐标原点O,与x轴交于点B.
(1)求抛物线对应的二次函数的表达式;
(2)过B作OA的平行线交y轴于点C,交抛物线于点D,求证:△OCD≌△OAB;
(3)在x轴上找一点P,使得△PCD的周长最小,求出P点的坐标.
21.(6分)在平面直角坐标系中,点O(0,0),点A(﹣3,0).已知抛物线y=﹣x2+2mx+3(m为常数),顶点为P.
(1)当抛物线经过点A时,顶点P的坐标为 ;
(2)在(1)的条件下,此抛物线与x轴的另一个交点为点B,与y轴交于点C.点Q为直线AC上方抛物线上一动点.
①如图1,连接QA、QC,求△QAC的面积最大值;
②如图2,若∠CBQ=45°,请求出此时点Q坐标.
22.(8分)如图1,已知中,,,,点、在上,点在外,边、与交于点、,交的延长线于点.
(1)求证:;
(2)当时,求的长;
(3)设,的面积为,
①求关于的函数关系式.
②如图2,连接、,若的面积是的面积的1.5倍时,求的值.
23.(8分)解下列方程:
(1);
(2).
24.(8分)如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C的仰角为30°,然后沿AD方向前行10m,到达B点,在B处测得树顶C的仰角高度为60°(A、B、D三点在同一直线上).请你根据他们测量数据计算这棵树CD的高度(结果精确到0.1m).(参考数据:≈1.414,≈1.732)
25.(10分)永祚寺双塔,又名凌霄双塔,是山西省会太原现存古建筑中最高的建筑. 位于太原市城区东南向山脚畔.数学活动小组的同学对其中一塔进行了测量.测量方 法如下:如图所示,间接测得该塔底部点到地面上一点的距离为,塔的顶端 为点,且,在点处竖直放一根标杆,其顶端为,在的延长 线上找一点,使三点在同一直线上,测得.
(1)方法 1,已知标杆,求该塔的高度;
(2)方法 2,测得,已知,求该塔的高度.
26.(10分)当今,越来越多的青少年在观看影片《流浪地球》后,更加喜欢同名科幻小说,该小说销量也急剧上升.书店为满足广大顾客需求,订购该科幻小说若干本,每本进价为20元.根据以往经验:当销售单价是25元时,每天的销售量是250本;销售单价每上涨1元,每天的销售量就减少10本,书店要求每本书的利润不低于10元且不高于18元.
(1)直接写出书店销售该科幻小说时每天的销售量(本)与销售单价(元)之间的函数关系式及自变量的取值范围.
(2)书店决定每销售1本该科幻小说,就捐赠元给困难职工,每天扣除捐赠后可获得最大利润为1960元,求的值.
参考答案
一、选择题(每小题3分,共30分)
1、D
2、D
3、A
4、B
5、B
6、A
7、D
8、C
9、A
10、C
二、填空题(每小题3分,共24分)
11、
12、a>或a<.
13、-2
14、
15、1
16、①④
17、
18、
三、解答题(共66分)
19、(1),;(2).
20、(1)y=﹣x1+x;(1)证明见解析;(3)P(﹣,0).
21、(1)(﹣1,4);(2)①;②Q(﹣,).
22、(1)证明见解析;(2);(3)①,②.
23、(1);(2)
24、这棵树CD的高度为8.7米
25、(1)55m;(2)54.5m
26、(1);(1).
德州陵城区五校联考2023-2024学年九上数学期末达标检测试题含答案: 这是一份德州陵城区五校联考2023-2024学年九上数学期末达标检测试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,如图,点A是反比例函数y=,如图等内容,欢迎下载使用。
2023-2024学年江苏省镇江市九上数学期末质量检测模拟试题含答案: 这是一份2023-2024学年江苏省镇江市九上数学期末质量检测模拟试题含答案,共8页。试卷主要包含了若一次函数y=ax+b,若,设,,,则、、的大小顺序为等内容,欢迎下载使用。
2023-2024学年江苏省连云港市海州区四校九上数学期末达标检测试题含答案: 这是一份2023-2024学年江苏省连云港市海州区四校九上数学期末达标检测试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,下列事件中,是随机事件的是,对于二次函数y=4,如图,以等内容,欢迎下载使用。