2023-2024学年河南省开封市金明中学数学九上期末复习检测模拟试题含答案
展开学校_______ 年级_______ 姓名_______
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.如图是拦水坝的横断面,,斜面坡度为,则斜坡的长为( )
A.米B.米C.米D.24米
2.如图,,是四边形的对角线,点,分别是,的中点,点,分别是,的中点,连接,,,,要使四边形为正方形,则需添加的条件是( )
A.,B.,
C.,D.,
3.如图,在平面直角坐标系中,正方形ABCD顶点B(﹣1,﹣1),C在x轴正半轴上,A在第二象限双曲线y=﹣上,过D作DE∥x轴交双曲线于E,连接CE,则△CDE的面积为( )
A.3B.C.4D.
4.如图,平面直角坐标系中,点E(﹣4,2),F(﹣1,﹣1),以原点O为位似中心,把△EFO缩小为△E′F′O,且△E′F′O与△EFO的相似比为1:2,则点E的对应点E′的坐标为( )
A.(2,﹣1)B.(8,﹣4)
C.(2,﹣1)或(﹣2,1)D.(8,﹣4)或(﹣8,4)
5.用配方法解一元二次方程x2﹣4x﹣5=0的过程中,配方正确的是( )
A.(x+2)2=1B.(x﹣2)2=1C.(x+2)2=9D.(x﹣2)2=9
6.如图,⊙O是△ABC的外接圆,连接OC、OB,∠BOC=100°,则∠A的度数为( )
A.30°B.40°C.50°D.60°
7.如图,四边形ABCD内接于,如果它的一个外角∠DCE=64°,那么∠BOD=( )
A.128°B.100°C.64°D.32°
8.反比例函数y=的图象经过点(3,﹣2),下列各点在图象上的是( )
A.(﹣3,﹣2)B.(3,2)C.(﹣2,﹣3)D.(﹣2,3)
9.在一个不透明的袋子里装有一个黑球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,在随机摸出一个球,两次都摸到黑球的概率是( )
A.B.C.D.
10.对于二次函数y=2(x+1)(x﹣3),下列说法正确的是( )
A.图象过点(0,﹣3)B.图象与x轴的交点为(1,0),(﹣3,0)
C.此函数有最小值为﹣6D.当x<1时,y随x的增大而减小
二、填空题(每小题3分,共24分)
11.如图,ΔABP是由ΔACD按顺时针方向旋转某一角度得到的,若∠BAP=60°,则在这一旋转过程中,旋转中心是____________,旋转角度为____________.
12.如图,量角器的0度刻度线为,将一矩形直角与量角器部分重叠,使直尺一边与量角器相切于点,直尺另一边交量角器于点,量得,点在量角器上的度数为60°,则该直尺的宽度为_________________.
13.关于x的一元二次方程x2﹣mx﹣2=0的一个根为﹣1,则m的值为________.
14.___________
15.如图,P为平行四边形ABCD边AD上一点,E、F分别为PB、PC的中点,ΔPEF、ΔPDC、ΔPAB的面积分别为S、S1、S1.若S=1,则S1+S1= .
16.在二次函数y=x2+bx+c中,函数y与自变量x的部分对应值如下表:
则m的值为_____.
17.一个密码箱的密码,每个数位上的数都是从0到9的自然数,若要使一次拨对的概率小于,则密码的位数至少要设置___位.
18.已知α,β是方程x2﹣3x﹣4=0的两个实数根,则α2+αβ﹣3α的值为_____.
三、解答题(共66分)
19.(10分)综合与探究
问题情境:
(1)如图1,两块等腰直角三角板△ABC和△ECD如图所示摆放,其中∠ACB=∠DCE=90°,点F,H,G分别是线段DE,AE,BD的中点,A,C,D和B,C,E分别共线,则FH和FG的数量关系是 ,位置关系是 .
合作探究:
(2)如图2,若将图1中的△DEC绕着点C顺时针旋转至A,C,E在一条直线上,其余条件不变,那么(1)中的结论还成立吗?若成立,请证明,若不成立,请说明理由.
(3)如图3,若将图1中的△DEC绕着点C顺时针旋转一个锐角,那么(1)中的结论是否还成立?若成立,请证明,若不成立,请说明理由.
20.(6分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别是A(﹣4,1),B(﹣1,2),C(﹣2,4).
(1)将△ABC向右平移4个单位后得到△A1B1C1,请画出△A1B1C1,并写出点B1的坐标;
(2)△A2B2C2和△A1B1C1关于原点O中心对称,请画出△A2B2C2,并写出点C2的坐标;
(3)连接点A和点B2,点B和点A2,得到四边形AB2A2B,试判断四边形AB2A2B的形状(无须说明理由).
21.(6分)如图,在中,∠C=90°,AC=3,AB=5,点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE始终保持垂直平分PQ,且交PQ于点D,交BC于点E.点P、Q同时出发,当点P到达点A时停止运动,点Q也随之停止.设点P、Q运动的时间是t秒(t>0).
(1)当t为何值时,?
(2)求四边形BQPC的面积S与t的函数关系式;
(3)是否存在某一时刻t,使四边形BQPC的面积与的面积比为13:15?若存在,求t的值.若不存在,请说明理由;
(4)若DE经过点C,试求t的值.
22.(8分)如图,已知AB是⊙O的直径,点C在⊙O上,点P是AB延长线上一点,∠BCP=∠A.
(1)求证:直线PC是⊙O的切线;
(2)若CA=CP,⊙O的半径为2,求CP的长.
23.(8分)超市销售某种儿童玩具,如果每件利润为40元(市场管理部门规定,该种玩具每件利润不能超过60元),每天可售出50件.根据市场调查发现,销售单价每增加2元,每天销售量会减少1件.设销售单价增加元,每天售出件.
(1)请写出与之间的函数表达式;
(2)当为多少时,超市每天销售这种玩具可获利润2250元?
(3)设超市每天销售这种玩具可获利元,当为多少时最大,最大值是多少?
24.(8分)如图,点A(1,m2)、点B(2,m﹣1)是函数y=(其中x>0)图象上的两点.
(1)求点A、点B的坐标及函数的解析式;
(2)连接OA、OB、AB,求△AOB的面积.
25.(10分)已知关于x的一元二次方程x2-2x+m=0有两个不相等的实数根.
(1)求实数m的最大整数值;
(2)在(1)的条件下,方程的实数根是、,求代数式的值.
26.(10分)已知抛物线y=x2﹣2和x轴交于A,B(点A在点B右边)两点,和y轴交于点C,P为抛物线上的动点.
(1)求出A,C的坐标;
(2)求动点P到原点O的距离的最小值,并求此时点P的坐标;
(3)当点P在x轴下方的抛物线上运动时,过P的直线交x轴于E,若△POE和△POC全等,求此时点P的坐标.
参考答案
一、选择题(每小题3分,共30分)
1、B
2、A
3、B
4、C
5、D
6、C
7、A
8、D
9、A
10、D
二、填空题(每小题3分,共24分)
11、,
12、
13、1
14、
15、2.
16、-1
17、1.
18、1
三、解答题(共66分)
19、(1)FG=FH,FG⊥FH;(2)(1)中结论成立,证明见解析;
(3)(1)中的结论成立,结论是FH=FG,FH⊥FG.理由见解析.
20、(1)如图,△A1B1C1为所作;见解析;点B1的坐标为(3,2);(2)如图,△A2B2C2为所作;见解析;点C2的坐标为(﹣2,﹣4);(3)如图,四边形AB2A2B为正方形.
21、(1);(2);(3)1或2;(4).
22、(1)见解析;(2)2
23、(1)(2)当为10时,超市每天销售这种玩具可获利润2250元(3)当为20时最大,最大值是2400元
24、(1)A(1,2),B(2,1),函数的解析式为y=;(2)
25、(1)1;(2)1.
26、(1)A(﹣,0),点C的坐标为(0,﹣2);(2)最小值为,点P的坐标为(,﹣)或(﹣,﹣);(3)P(﹣1,﹣1)或(1,1).
x
-2
-1
0
1
2
3
4
y
7
2
-1
-2
m
2
7
河南省卫辉市2023-2024学年九上数学期末复习检测模拟试题含答案: 这是一份河南省卫辉市2023-2024学年九上数学期末复习检测模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,若,则的值为等内容,欢迎下载使用。
2023-2024学年河南省开封市金明中学九年级数学第一学期期末质量检测试题含答案: 这是一份2023-2024学年河南省开封市金明中学九年级数学第一学期期末质量检测试题含答案,共7页。试卷主要包含了方程x2﹣x=0的解为,已知sinα=,求α等内容,欢迎下载使用。
2023-2024学年河南省开封市东南区数学九年级第一学期期末复习检测模拟试题含答案: 这是一份2023-2024学年河南省开封市东南区数学九年级第一学期期末复习检测模拟试题含答案,共8页。试卷主要包含了等于等内容,欢迎下载使用。