2023-2024学年浙江省杭州市临安区数学九年级第一学期期末检测模拟试题含答案
展开学校_______ 年级_______ 姓名_______
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题3分,共30分)
1.二次根式中x的取值范围是( )
A.x≥﹣2B.x≥2C.x≥0D.x>﹣2
2.某班抽取6名同学参加体能测试,成绩如下:1,95,1,80,80,1.下列表述错误的是( )
A.众数是1B.平均数是1C.中位数是80D.极差是15
3.如图,∠ACB是⊙O的圆周角,若⊙O的半径为10,∠ACB=45°,则扇形AOB的面积为( )
A.5πB.12.5πC.20πD.25π
4.学校体育室里有6个箱子,分别装有篮球和足球(不混装),数量分别是8,9,16,20,22,27,体育课上,某班体育委员拿走了一箱篮球,在剩下的五箱球中,足球的数量是篮球的2倍,则这六箱球中,篮球有( )箱.
A.2B.3C.4D.5
5.下列手机手势解锁图案中,是中心对称图形的是( )
A.B.C.D.
6.二次函数y=﹣(x﹣1)2+5,当m≤x≤n且mn<0时,y的最小值为2m,最大值为2n,则m+n的值为( )
A.B.2C.D.
7.如图,在中,∠B=90°,AB=2,以B为圆心,AB为半径画弧,恰好经过AC的中点D,则弧AD与线段AD围成的弓形面积是( )
A.B.C.D.
8.甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图,则符合这一结果的实验可能是( )
A.掷一枚正六面体的骰子,出现1点的概率
B.抛一枚硬币,出现正面的概率
C.从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率
D.任意写一个整数,它能被2整除的概率
9.如图,在等腰中,于点,则的值( )
A.B.C.D.
10.模型结论:如图①,正内接于,点是劣弧上一点,可推出结论.
应用迁移:如图②,在中,,,,是内一点,则点到三个顶点的距离和的最小值为( )
A.B.5C.D.
二、填空题(每小题3分,共24分)
11.如图,AB是⊙O的弦,AB长为8,P是⊙O上一个动点(不与A、B重合),过点O作OC⊥AP于点C,OD⊥PB于点D,则CD的长为 ▲ .
12.太阳从西边升起是_____事件.(填“随机”或“必然”或“不可能”).
13.小燕抛一枚硬币10次,有7次正面朝上,当她抛第11次时,正面向上的概率为_________.
14.一元二次方程的两实数根分别为,计算的值为__________.
15.函数沿直线翻折所得函数解析式为_____________.
16.已知一个扇形的半径为5cm,面积是20cm2,则它的弧长为_____.
17.一棵参天大树,树干周长为3米,地上有一根常春藤恰好绕了它5圈,藤尖离地面20米高,那么这根常春藤至少有____米.
18.如图,半圆的半径为4,初始状态下其直径平行于直线.现让半圆沿直线进行无滑动滚动,直到半圆的直径与直线重合为止.在这个滚动过程中,圆心运动路径的长度等于_________.
三、解答题(共66分)
19.(10分)如图,,是的两条弦,点分别在,上,且,是的中点.
求证:(1).
(2)过作于点.当,时,求的半径.
20.(6分)如图,抛物线与直线交于A、B两点.点A的横坐标为-3,点B在y轴上,点P是y轴左侧抛物线上的一动点,横坐标为m,过点P作PC⊥x轴于C,交直线AB于D.
(1)求抛物线的解析式;
(2)当m为何值时,;
(3)是否存在点P,使△PAD是直角三角形,若存在,求出点P的坐标;若不存在,说明理由.
21.(6分)如图,四边形、、都是正方形.
求证:;
求的度数.
22.(8分)如图,在⊙O中,点D是⊙O上的一点,点C是直径AB延长线上一点,连接BD,CD,且∠A=∠BDC.
(1)求证:直线CD是⊙O的切线;
(2)若CM平分∠ACD,且分别交AD,BD于点M,N,当DM=2时,求MN的长.
23.(8分)一个盒子中装有两个红球,一个白球和一个蓝球,这些球除颜色外都相同,从中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球,请你用列表法和画树状图法求两次摸到的球的颜色能配成紫色的概率(说明:红色和蓝色能配成紫色)
24.(8分)如图,抛物线y=x2+bx+c与直线y=x+3交于A,B两点,交x轴于C、D两点,连接AC、BC,已知A(0,3),C(﹣3,0).
(1)求抛物线的解析式;
(2)在抛物线对称轴l上找一点M,使|MB﹣MD|的值最大,并求出这个最大值;
(3)点P为y轴右侧抛物线上一动点,连接PA,过点P作PQ⊥PA交y轴于点Q,问:是否存在点P使得以A,P,Q为顶点的三角形与△ABC相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.
25.(10分)如图,A,B,C为⊙O上的定点.连接AB,AC,M为AB上的一个动点,连接CM,将射线MC绕点M顺时针旋转90°,交⊙O于点D,连接BD.若AB=6cm,AC=2cm,记A,M两点间距离为xcm,B,D两点间的距离为ycm.
小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.
下面是小东探究的过程,请补充完整:
(1)通过取点、画图、测量,得到了x与y的几组值,如下表,补全表格:
(2)在平面直角坐标系xOy中,描出补全后的表中各对对应值为坐标的点,画出该函数的图象;
(3)结合画出的函数图象,解决问题:当BD=AC时,AM的长度约为 cm.
26.(10分)某食品厂生产一种半成品食材,成本为2元/千克,每天的产量P(百千克)与销售价格x(元/千克)满足函数关系式p=x+1.从市场反馈的信息发现,该食材每天的市场需求量q(百千克)与销售价格x(元/千克)满足一次函数关系,部分数据如表:
已知按物价部门规定销售价格x不低于2元/千克且不高于10元/千克,
(1)直接写出q与x的函数关系式,并注明自变量x的取值范围;
(2)当每天的产量小于或等于市场需求量时,这种食材能全部售出;当每天的产量大于市场需求量时,只能售出市场需求的量,而剩余的食材由于保质期短作废弃处理;
①当每天的食材能全部售出时,求x的取值范围;
②求厂家每天获得的利润y(百元)与销售价格x的函数关系式;
(3)在(2)的条件下,当x为多少时,y有最大值,并求出最大利润.
参考答案
一、选择题(每小题3分,共30分)
1、A
2、C
3、D
4、B
5、B
6、D
7、B
8、C
9、D
10、D
二、填空题(每小题3分,共24分)
11、1.
12、不可能
13、
14、-10
15、
16、1
17、25
18、
三、解答题(共66分)
19、(1)见解析;(2)
20、(1)y=x1+4x-1;(1)∴m=,-1,或-3时S四边形OBDC=1SS△BPD
21、(1)见解析;(2)45°.
22、(1)见解析;(2)MN=2.
23、.
24、(1)抛物线的解析式是y=x2+x+3;(2)|MB﹣MD|取最大值为;(3)存在点P(1,6).
25、(1)2.41;(2)详见解析;(3)1.38或4.1(本题答案不唯一).
26、(1)q=﹣x+14,其中2≤x≤10;(2)①2≤x≤4,②y=;(3)x=时取最大值,最大利润百元.
x/cm
0
0.25
0.47
1
2
3
4
5
6
y/cm
1.43
0.66
0
1.31
2.59
2.76
1.66
0
销售价格x(元/千克)
2
4
……
10
市场需求量q(百千克)
12
10
……
4
浙江省杭州市临安区、富阳区2023-2024学年数学九年级第一学期期末质量跟踪监视模拟试题含答案: 这是一份浙江省杭州市临安区、富阳区2023-2024学年数学九年级第一学期期末质量跟踪监视模拟试题含答案,共8页。
2023-2024学年浙江省杭州市临安县九年级数学第一学期期末统考模拟试题含答案: 这是一份2023-2024学年浙江省杭州市临安县九年级数学第一学期期末统考模拟试题含答案,共9页。试卷主要包含了考生必须保证答题卡的整洁,已知二次函数y=等内容,欢迎下载使用。
2023-2024学年浙江省杭州市临安区、富阳区数学九上期末质量检测模拟试题含答案: 这是一份2023-2024学年浙江省杭州市临安区、富阳区数学九上期末质量检测模拟试题含答案,共7页。试卷主要包含了答题时请按要求用笔,在中,,则的长为,一元二次方程的根的情况是等内容,欢迎下载使用。