2023-2024学年浙江省杭州市萧山区城北片九年级数学第一学期期末质量检测试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.下列函数中是反比例函数的是( )
A.B.C.D.
2.如图,P是等腰直角△ABC外一点,把BP绕点B顺时针旋转90°到BP′,使点P′在△ABC内,已知∠AP′B=135°,若连接P′C,P′A:P′C=1:4,则P′A:P′B=( )
A.1:4B.1:5C.2:D.1:
3.如图,△ABC的内切圆⊙O与BC、CA、AB分别相切于点D、E、F,且AB=5,BC=13,CA=12,则阴影部分(即四边形AEOF)的面积是( )
A.4B.6.25C.7.5D.9
4.如图,中,,,,则( )
A.B.C.D.
5.一个布袋里装有10个只有颜色不同的球,其中4个黄球,6个白球.从布袋里任意摸出1个球,则摸出的球是黄球的概率为( )
A.B.C.D.
6.如图,在△ABC中,AD=AC,延长CD至B,使BD=CD,DE⊥BC交AB于点E,EC交AD于点F.下列四个结论:①EB=EC;②BC=2AD;③△ABC∽△FCD;④若AC=6,则DF=1.其中正确的个数有()
A.1B.2C.1D.4
7.根据表中的二次函数y=ax2+bx+c的自变量x与函数y的对应值(其中m>0>n),下列结论正确的( )
A.abc>0B.b2﹣4ac<0C.4a﹣2b+c<0D.a+b+c<0
8.中,,,,的值为( )
A.B.C.D.2
9.抛物线y=(x﹣2)2﹣1可以由抛物线y=x2平移而得到,下列平移正确的是( )
A.先向左平移2个单位长度,然后向上平移1个单位长度
B.先向左平移2个单位长度,然后向下平移1个单位长度
C.先向右平移2个单位长度,然后向上平移1个单位长度
D.先向右平移2个单位长度,然后向下平移1个单位长度
10.如图,已知:在⊙O中,OA⊥BC,∠AOB=70°,则∠ADC的度数为( )
A.70°B.45°C.35°D.30°
二、填空题(每小题3分,共24分)
11.某工厂的产品每50件装为一箱,现质检部门对100箱产品进行质量检查,每箱中的次品数见表:
该工厂规定:一箱产品的次品数达到或超过6%,则判定该箱为质量不合格的 产品箱.若在这100箱中随机抽取一箱,抽到质量不合格的产品箱概率为_______
12.如图,为的弦,的半径为5,于点,交于点,且,则弦的长是_____.
13.已知点P1(a,3)与P2(-4,b)关于原点对称,则ab=_____.
14.某公司生产一种饮料是由A,B两种原料液按一定比例配成,其中A原料液的原成本价为10元/千克,B原料液的原成本价为5元/千克,按原售价销售可以获得50%的利润率,由于物价上涨,现在A原料液每千克上涨20%,B原料液每千克上涨40%,配制后的饮料成本增加了,公司为了拓展市场,打算再投入现在成本的25%做广告宣传,如果要保证该种饮料的利润率不变,则这种饮料现在的售价应比原来的售价高_____元/千克.
15.如图,AB是半圆O的直径,D是半圆O上一点,C是的中点,连结AC交BD于点E,连结AD,若BE=4DE,CE=6,则AB的长为_____.
16.抛物线的顶点为,已知一次函数的图象经过点,则这个一次函数图象与两坐标轴所围成的三角形面积为__________.
17.抛物线y=(x﹣1)(x﹣3)的对称轴是直线x=_____.
18.如图,已知二次函数顶点的纵坐标为,平行于轴的直线交此抛物线,两点,且,则点到直线的距离为__________
三、解答题(共66分)
19.(10分)如图,抛物线y=ax2+bx+c经过△ABC的三个顶点,与y轴相交于(0,),点A坐标为(-1,2),点B是点A关于y轴的对称点,点C在x轴的正半轴上.
(1)求该抛物线的函数解析式;
(2)点F为线段AC上一动点,过点F作FE⊥x轴,FG⊥y轴,垂足分别为点E,G,当四边形OEFG为正方形时,求出点F的坐标;
(3)将(2)中的正方形OEFG沿OC向右平移,记平移中的正方形OEFG为正方形DEFG,当点E和点C重合时停止运动,设平移的距离为t,正方形的边EF与AC交于点M,DG所在的直线与AC交于点N,连接DM,是否存在这样的t,使△DMN是等腰三角形?若存在,求t的值;若不存在,请说明理由.
20.(6分)元旦了,九(2)班每个同学都与全班同学交换一件自制的小礼物,结果全班交换小礼物共1560件,求九(2)班有多少个同学?
21.(6分)(1)解方程
(2)计算
22.(8分)某型号飞机的机翼形状如图所示,已知所在直线互相平行且都与所在直线垂直,.,,,.求的长度(参考数,,,,,)
23.(8分)计算:2cs30°-tan45°-.
24.(8分)如图,在中,,,点在边上,且线段绕着点按逆时针方向旋转能与重合,点是与的交点.
(1)求证:;
(2)若,求的度数.
25.(10分)图中是抛物线拱桥,点P处有一照明灯,水面OA宽4m,以O为原点,OA所在直线为x轴建立平面直角坐标系,已知点P的坐标为(3,).
(1)求这条抛物线的解析式;
(2)水面上升1m,水面宽是多少?
26.(10分)如图,在矩形ABCD中,AB=3,BC=4,点E是线段AC上的一个动点且=k(0<k<1),点F在线段BC上,且DEFH为矩形;过点E作MN⊥BC,分别交AD,BC于点M,N.
(1)求证:△MED∽△NFE;
(2)当EF=FC时,求k的值.
(3)当矩形EFHD的面积最小时,求k的值,并求出矩形EFHD面积的最小值.
参考答案
一、选择题(每小题3分,共30分)
1、B
2、C
3、A
4、B
5、B
6、C
7、C
8、C
9、D
10、C
二、填空题(每小题3分,共24分)
11、
12、1
13、﹣1
14、1
15、4
16、1
17、1
18、1
三、解答题(共66分)
19、(1)y=﹣x2+;(2)(1,1);(3)当△DMN是等腰三角形时,t的值为,3﹣或1.
20、40个
21、(1);(2)1.
22、
23、-1.
24、(1)证明见解析;(2)
25、(1)y=﹣x2+2x;(2)2m
26、(1)见解析;(2);(3)矩形EFHD的面积最小值为,k=.
x
…
0
1
2
4
…
y
…
m
k
m
n
…
次品数
0
1
2
3
4
5
箱数
50
14
20
10
4
2
浙江省杭州市萧山区厢片五校2023-2024学年九上数学期末达标检测模拟试题含答案: 这是一份浙江省杭州市萧山区厢片五校2023-2024学年九上数学期末达标检测模拟试题含答案,共7页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
2023-2024学年浙江省杭州市萧山区城厢片九年级数学第一学期期末教学质量检测试题含答案: 这是一份2023-2024学年浙江省杭州市萧山区城厢片九年级数学第一学期期末教学质量检测试题含答案,共7页。
2023-2024学年浙江省杭州市萧山区城北片八上数学期末综合测试试题含答案: 这是一份2023-2024学年浙江省杭州市萧山区城北片八上数学期末综合测试试题含答案,共7页。试卷主要包含了答题时请按要求用笔,已知且,那么等于,数据5,7,8,8,9的众数是,若点P,下列命题是假命题的是等内容,欢迎下载使用。