2023-2024学年福建省泉州市名校数学九上期末教学质量检测模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)
1.下列事件中,是必然事件的是( )
A.掷一枚质地均匀的骰子,向上一面的点数为偶数
B.三角形的内角和等于180°
C.不透明袋子中装有除色外无其它差别的9个白球,1个黑球,从中摸出一球为白球
D.抛掷一枚质地均匀的硬币2次,出现1次“正面向上”,1次“反面向上”
2.如图,在 Rt△ABC 中BC=2,以 BC 的中点 O 为圆心的⊙O 分别与 AB,AC 相切于 D,E 两点,的长为( )
A.B.C.πD.2π
3.如图,在菱形ABCD中,点E,F分别在AB,CD上,且,连接EF交BD于点O连接AO.若,,则的度数为( )
A.50°B.55°C.65°D.75°
4.如图,一根电线杆垂直于地面,并用两根拉线,固定,量得,,则拉线,的长度之比( )
A.B.C.D.
5.﹣3的绝对值是( )
A.﹣3B.3C.-D.
6.如图,在四边形ABCD中,BD平分∠ABC,∠BAD=∠BDC=90°,E为BC的中点,AE与BD相交于点F,若BC=4,∠CBD=30°,则AE的长为( )
A.B.C.D.
7.关于的二次方程的一个根是0,则a的值是( )
A.1B.-1C.1或-1D.0.5
8.若点是直线上一点,已知,则的最小值是( )
A.4B.C.D.2
9.下列事件是必然事件的是( )
A.抛掷一枚硬币四次,有两次正面朝上
B.打开电视频道,正在播放《在线体育》
C.射击运动员射击一次,命中十环
D.方程x2﹣2x﹣1=0必有实数根
10.若关于x的方程kx2﹣2x﹣1=0有实数根,则实数k的取值范围是( )
A.k>﹣1B.k<1且k≠0C.k≥﹣1且k≠0D.k≥﹣1
二、填空题(每小题3分,共24分)
11.如图,为正五边形的一条对角线,则∠=_____________.
12.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论: ①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,有y2<y1 ,
其中正确的是________.
13.正八边形的每个外角的度数和是_____.
14.抛物线y=3x2向右平移1个单位,再向下平移2个单位,所得到的抛物线是____.
15.在一个不透明的袋子中有若千个小球,这些球除颜色外无其他差别,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,然后把它重新放回袋中并摇匀,不断重复上述过程.以下是利用计算机模拟的摸球试验统计表:
根据试验所得数据,估计“摸出黑球”的概率是_______(结果保留小数点后一位).
16.在△ABC中,∠C=90°,AC=,∠CAB的平分线交BC于D,且,那么tan∠BAC=_________.
17.不透明的口袋里有除颜色外其它均相同的红、白、黑小球共计120个,玲玲通过多次摸球实验后发现,摸到红球和黑球的概率稳定在和,那么口袋中白球的个数极有可能是_______个.
18.如图,直线分别交轴,轴于点A和点B,点C是反比例函数的图象上位于直线下方的一点,CD∥轴交AB于点D,CE∥轴交AB于点E,,则的值为______
三、解答题(共66分)
19.(10分)先化简,再求值:,其中.
20.(6分)有一个直径为1m的圆形铁皮,要从中剪出一个最大的圆心角为90°的扇形ABC,如图所示.
(1)求被剪掉阴影部分的面积:
(2)用所留的扇形铁皮围成一个圆锥,该圆锥的底面圆的半径是多少?
21.(6分)如图,已知直线y=x+2与x轴、y轴分别交于点B,C,抛物线y=x2+bx+c过点B、C,且与x轴交于另一个点A.
(1)求该抛物线的表达式;
(2)若点P是x轴上方抛物线上一点,连接OP.
①若OP与线段BC交于点D,则当D为OP中点时,求出点P坐标.
②在抛物线上是否存在点P,使得∠POC=∠ACO若存在,求出点P坐标;若不存在,请说明理由.
22.(8分)解下列方程
(1)x2+4x﹣1=0
(2)(y+2)2=(3y﹣1)2
23.(8分)作出函数y=2x2的图象,并根据图象回答下列问题:
(1)列表:
(2)在下面给出的正方形网格中建立适当的平面直角坐标系,描出列表中的各点,并画出函数y=2x2的图象:
(3)观察所画函数的图象,当﹣1<x<2时,y的取值范围是 (直接写出结论).
24.(8分)已知二次函数y=ax2+bx﹣3a经过点A(﹣1,0)、C(0,3),与x轴交于另一点B,抛物线的顶点为D,
(1)求此二次函数解析式;
(2)连接DC、BC、DB,求证:△BCD是直角三角形;
(3)在对称轴右侧的抛物线上是否存在点P,使得△PDC为等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由.
25.(10分)如图,在南北方向的海岸线上,有两艘巡逻船,现均收到故障船的求救信号.已知两船相距海里,船在船的北偏东60°方向上,船在船的东南方向上, 上有一观测点,测得船正好在观测点的南偏东75°方向上.
(1)分别求出与,与间的距离和; (本问如果有根号,结果请保留根号) (此提示可以帮助你解题:∵,∴)
(2)已知距观测点处100海里范围内有暗礁,若巡逻船沿直线去营救船,去营救的途中有无触礁的危险?(参考数据: )
26.(10分)如图,已知:在△ABC中,AB=AC,BD是AC边上的中线,AB=13,BC=10,
(1)求△ABC的面积;
(2)求tan∠DBC的值.
参考答案
一、选择题(每小题3分,共30分)
1、B
2、B
3、C
4、D
5、B
6、D
7、B
8、B
9、D
10、C
二、填空题(每小题3分,共24分)
11、36°
12、①③⑤
13、360°.
14、y=3(x﹣1)2﹣2
15、0.1
16、
17、1
18、
三、解答题(共66分)
19、原式=.
20、(1)平方米;(2)米;
21、(2)y=﹣x2+x+2;(2)①点P坐标为(2,3);②存在点P(,﹣2)或(,﹣7)使得∠POC=∠ACO
22、 (1) x1=﹣2+,x2=﹣2﹣;(2) y1=﹣,y2=.
23、(1)见解析;(2)见解析;(3)
24、(2)抛物线的解析式为y=﹣x2+2x+2.(2)证明见解析;(2)点P坐标为(,)或(2,2).
25、(1)与之间的距离为200海里, 与之间的距离为海里;(2)巡逻船沿直线航线,在去营救的途中没有触暗礁危险.
26、(1)60;(2).
摸球实验次数
100
1000
5000
10000
50000
100000
“摸出黑球”的次数
36
387
2019
4009
19970
40008
“摸出黑球”的频率
(结果保留小数点后三位)
0.360
0.387
0.404
0.401
0.399
0.400
x
…
…
y
…
…
上海市虹口区名校2023-2024学年九上数学期末教学质量检测模拟试题含答案: 这是一份上海市虹口区名校2023-2024学年九上数学期末教学质量检测模拟试题含答案,共8页。试卷主要包含了下列事件是必然事件的是等内容,欢迎下载使用。
2023-2024学年河北省承德市名校九上数学期末教学质量检测模拟试题含答案: 这是一份2023-2024学年河北省承德市名校九上数学期末教学质量检测模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,下列事件中是不可能事件的是,一组数据,关于x的一元二次方程x2+等内容,欢迎下载使用。
福建省宁德市名校2023-2024学年九上数学期末质量检测模拟试题含答案: 这是一份福建省宁德市名校2023-2024学年九上数学期末质量检测模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,下列命题正确的是,下列方程中不是一元二次方程的是等内容,欢迎下载使用。