2023-2024学年广东省佛山市南海区里水镇数学九上期末学业水平测试试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.如图,在矩形ABCD中,AD=2AB.将矩形ABCD对折,得到折痕MN,沿着CM折叠,点D的对应点为E,ME与BC的交点为F;再沿着MP折叠,使得AM与EM重合,折痕为MP,此时点B的对应点为G.下列结论:①△CMP是直角三角形;②AB=BP;③PN=PG;④PM=PF;⑤若连接PE,则△PEG∽△CMD.其中正确的个数为( )
A.5个B.4个C.3个D.2个
2.如图,已知△AOB与△A1OB1是以点O为位似中心的位似图形,且相似比为1:2,点B的坐标为(-1,2),则点B1的坐标为( )
A.(2,-4)B.(1,-4)C.(-1,4)D.(-4,2)
3.一个不透明的袋子装有除颜色外其余均相同的2个白球和个黑球.随机地从袋中摸出一个球记录下颜色,再放回袋中摇匀.大量重复试验后,发现摸出白球的频率稳定在1.2附近,则的值为( )
A.2B.4C.8D.11
4.下列函数是二次函数的是( )
A.y=2x﹣3B.y=C.y=(x﹣1)(x+3)D.
5.如图,以AD为直径的半圆O经过Rt△ABC斜边AB的两个端点,交直角边AC于点E,B、E是半圆弧的三等分点,弧BE的长为π,则图中阴影部分的面积为( )
A.B.C.D.
6.已知点A(1,a)、点B(b,2)关于原点对称,则a+b的值为( )
A.3B.-3C.-1D.1
7.如图,已知等边的边长为,以为直径的圆交于点,以为圆心,为半径作圆,是上一动点,是的中点,当最大时,的长为( )
A.B.C.D.
8.已知点O是△ABC的外心,作正方形OCDE,下列说法:①点O是△AEB的外心;②点O是△ADC的外心;③点O是△BCE的外心;④点O是△ADB的外心.其中一定不成立的说法是( )
A.②④B.①③C.②③④D.①③④
9.数据60,70,40,30这四个数的平均数是( )
A.40B.50C.60D.70
10.某市为解决部分市民冬季集中取暖问题需铺设一条长3000米的管道,为尽量减少施工对交通造成的影响,实施施工时“…”,设实际每天铺设管道x米,则可得方程 =15,根据此情景,题中用“…”表示的缺失的条件应补为( )
A.每天比原计划多铺设10米,结果延期15天才完成
B.每天比原计划少铺设10米,结果延期15天才完成
C.每天比原计划多铺设10米,结果提前15天才完成
D.每天比原计划少铺设10米,结果提前15天才完成
二、填空题(每小题3分,共24分)
11.用配方法解方程时,原方程可变形为 _________ .
12.如图,直线m∥n,以直线m上的点A为圆心,适当长为半径画弧,分别交直线m,n于点B、C,连接AC、BC,若∠1=30°,则∠2=_____.
13.从一个不透明的口袋中随机摸出一球,再放回袋中,不断重复上述过程,一共摸了150次,其中有50次摸到黑球,已知口袋中仅有黑球5个和白球若干个,这些球除颜色外,其他都一样,由此估计口袋中有___个白球.
14.如图,⊙O直径CD=20,AB是⊙O的弦,AB⊥CD,垂足为M,若OM:OC=3:5,则弦AB的长为______.
15.闹元宵吃汤圆是我国传统习俗,正月十五小明的妈妈煮了一碗汤圆,其中有4个花生味和2个芝麻味,小明从中任意吃一个,恰好吃到花生味汤圆的概率是_____.
16.如图,点、、在上,若,,则________.
17.如图,要拧开一个边长为的正六边形螺帽,扳手张开的开口至少为__________.
18.抛物线y=ax2-4ax+4(a≠0)与y轴交于点A.过点B(0,3)作y轴的垂线l,若抛物线y=ax2-4ax+4(a≠0)与直线l有两个交点,设其中靠近y轴的交点的横坐标为m,且│m│<1,则a的取值范围是______.
三、解答题(共66分)
19.(10分)邻边不相等的平行四边形纸片,剪去一个菱形,余下一个四边形,称为第一次操作;在余下的四边形纸片中再剪去一个菱形,又余下一个四边形,称为第二次操作;……依次类推,若第n次操作余下的四边形是菱形,则称原平行四边形为n阶准菱形,如图1,平行四边形中,若,则平行四边形为1阶准菱形.
(1)判断与推理:
① 邻边长分别为2和3的平行四边形是__________阶准菱形;
② 小明为了剪去一个菱形,进行如下操作:如图2,把平行四边形沿着折叠(点在上)使点落在边上的点,得到四边形,请证明四边形是菱形.
(2)操作、探究与计算:
① 已知平行四边形的邻边分别为1,裁剪线的示意图,并在图形下方写出的值;
② 已知平行四边形的邻边长分别为,满足,请写出平行四边形是几阶准菱形.
20.(6分)某店以每件60元的进价购进某种商品,原来按每件100元的售价出售,一天可售出50件;后经市场调查,发现这种商品每件售价每降低1元,其销量可增加5件.
(1)该店销售该商品原来一天可获利润 元.
(2)设后来该商品每件售价降价元,此店一天可获利润元.
①若此店为了尽量多地增加该商品的销售量,且一天仍能获利2625元,则每件商品的售价应降价多少元?②求与之间的函数关系式,当该商品每件售价为多少元时,该店一天所获利润最大?并求最大利润值.
21.(6分)如图,四边形ABCD是正方形,△ADF旋转一定角度后得到△ABE,且点E在线段AD上,若AF=4,∠F=60°.
(1)指出旋转中心和旋转角度;
(2)求DE的长度和∠EBD的度数.
22.(8分)如图,在△ABC中,AD是角平分钱,点E在AC上,且∠EAD=∠ADE.
(1)求证:△DCE∽△BCA;
(2)若AB=3,AC=1.求DE的长.
23.(8分)如图是由9个小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,请按要求画出该几何体的主视图与左视图.
24.(8分)解方程:(x﹣2)(x﹣1)=3x﹣6
25.(10分)如图,图中每个小方格都是边长为1个单位长度的正方形,在方格纸中的位置如图所示.
(1)请在图中建立平面直角坐标系,使得,两点的坐标分别为,,并写出点的坐标;
(2)在图中作出绕坐标原点旋转后的,并写出,,的坐标.
26.(10分)如图,二次函数y=(x﹣2)2+m的图象与y轴交于点C,点B是点C关于该二次函数图象的对称轴对称的点.已知一次函数y=kx+b的图象经过该二次函数图象上点A(1,0)及点B.
(1)求二次函数与一次函数的解析式;
(2)根据图象,写出满足kx+b≥(x﹣2)2+m的x的取值范围.
参考答案
一、选择题(每小题3分,共30分)
1、B
2、A
3、C
4、C
5、D
6、B
7、B
8、A
9、B
10、C
二、填空题(每小题3分,共24分)
11、
12、75°
13、1
14、1.
15、
16、
17、
18、a>或a<.
三、解答题(共66分)
19、(1)① 2,②证明见解析;(2)①见解析,②▱ABCD是10阶准菱形.
20、(1)2000;(2)①售价是75元,②售价为85元,利润最大为3125元.
21、 (1) 90°;(2) 15°.
22、(1)、证明过程见解析;(2)、
23、见解析
24、x=2或x=1
25、(1)图形见解析,点坐标;(2)作图见解析,,,的坐标分别是
26、(1)二次函数解析式为y=(x﹣2)2﹣1;一次函数解析式为y=x﹣1.(2)1≤x≤2.
广东省佛山市南海区里水镇2023-2024学年数学九上期末质量检测模拟试题含答案: 这是一份广东省佛山市南海区里水镇2023-2024学年数学九上期末质量检测模拟试题含答案,共9页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
广东省佛山市南海区2023-2024学年数学八上期末学业水平测试试题含答案: 这是一份广东省佛山市南海区2023-2024学年数学八上期末学业水平测试试题含答案,共6页。试卷主要包含了若是完全平方式,则m的值等于等内容,欢迎下载使用。
广东省佛山市南海区里水镇2023-2024学年八上数学期末监测模拟试题含答案: 这是一份广东省佛山市南海区里水镇2023-2024学年八上数学期末监测模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,下列运算结果正确的是等内容,欢迎下载使用。