2023-2024学年成都十八中学数学九上期末学业水平测试模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每小题3分,共30分)
1.在△ABC中,∠C=90°,AC=9,sinB=,则AB=( )
A.15 B.12 C.9 D.6
2.一个凸多边形共有 20 条对角线,它是( )边形
A.6B.7C.8D.9
3.在一个不透明的袋子里装有6个颜色不同的球(除颜色不同外,质地、大小均相同),其中个球为红球,个球为白球,若从该袋子里任意摸出1个球,则摸出的球是白球的概率为( )
A.B.C.D.
4.向阳村年的人均收入为万元,年的人均收入为万元.设年平均增长率为,根据题意,可列出方程为( )
A.B.C.D.
5.如图,如果∠BAD=∠CAE,那么添加下列一个条件后,仍不能确定△ABC∽△ADE的是( )
A.∠B=∠DB.∠C=∠AED
C.=D.=
6.某商品原价格为100元,连续两次上涨,每次涨幅10%,则该商品两次上涨后的价格为( )
A.121元B.110元C.120元D.81元
7.二次函数的图象如图,则一次函数的图象经过( )
A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限
8.二次函数化为的形式,结果正确的是( )
A.B.
C.D.
9.如图是半径为2的⊙O的内接正六边形ABCDEF,则圆心O到边AB的距离是( )
A.2B.1C.D.
10.抛物线,下列说法正确的是( )
A.开口向下,顶点坐标B.开口向上,顶点坐标
C.开口向下,顶点坐标D.开口向上,顶点坐标
二、填空题(每小题3分,共24分)
11.若一个圆锥的侧面展开图是一个半径为3cm,圆心角为120°的扇形,则该圆锥的侧面面积为_____cm2(结果保留π).
12.△ABC中,∠A=90°,AB=AC,以A为圆心的圆切BC于点D,若BC=12cm,则⊙A的半径为_____cm.
13.如果是一元二次方程的一个根,那么的值是__________.
14.关于x的分式方程有增根,则m的值为__________.
15.如图,在平面直角坐标系中,为坐标原点,点在第一象限,与轴所夹的锐角为,且,则的值是______.
16.如图,Rt△OAB的顶点A(﹣2,4)在抛物线y=ax2上,将Rt△OAB绕点O顺时针旋转90°,得到△OCD,边CD与该抛物线交于点P,则点P的坐标为_____.
17.已知函数的图象如图所示,若矩形的面积为,则__________.
18.如图,已知公路L上A,B两点之间的距离为100米,小明要测量点C与河对岸的公路L的距离,在A处测得点C在北偏东60°方向,在B处测得点C在北偏东30°方向,则点C到公路L的距离CD为_____米.
三、解答题(共66分)
19.(10分)某市“艺术节”期间,小明、小亮都想去观看茶艺表演,但是只有一张茶艺表演门票,他们决定采用抽卡片的办法确定谁去.规则如下:
将正面分别标有数字1、2、3、4的四张卡片(除数字外其余都相同)洗匀后,背面朝上放置在桌面上,随机抽出一张记下数字后放回;重新洗匀后背面朝上放置在桌面上,再随机抽出一张记下数字.如果两个数字之和为奇数,则小明去;如果两个数字之和为偶数,则小亮去.
(1)请用列表或画树状图的方法表示抽出的两张卡片上的数字之和的所有可能出现的结果;
(2)你认为这个规则公平吗?请说明理由.
20.(6分)在Rt△ABC中,∠C=90°,∠B=60°,a=2. 求b和c.
21.(6分)如图,已知一次函数与反比例函数的图象相交于点,与轴相交于点.
(1)填空:的值为 ,的值为 ;
(2)以为边作菱形,使点在轴正半轴上,点在第一象限,求点的坐标;
22.(8分)如图,已知AB为⊙O的直径,PA与⊙O相切于A点,点C是⊙O上的一点,且PC=PA.
(1)求证:PC是⊙O的切线;
(2)若∠BAC=45°,AB=4,求PC的长.
23.(8分)如图,对称轴是的抛物线与轴交于两点,与轴交于点,
求抛物线的函数表达式;
若点是直线下方的抛物线上的动点,求的面积的最大值;
若点在抛物线对称轴左侧的抛物线上运动,过点作铀于点,交直线于点,且,求点的坐标;
在对称轴上是否存在一点,使的周长最小,若存在,请求出点的坐标和周长的最小值;若不存在,请说明理由.
24.(8分)如图,抛物线y=a(x+2)(x﹣4)与x轴交于A,B两点,与y轴交于点C,且∠ACO=∠CBO.
(1)求线段OC的长度;
(2)若点D在第四象限的抛物线上,连接BD、CD,求△BCD的面积的最大值;
(3)若点P在平面内,当以点A、C、B、P为顶点的四边形是平行四边形时,直接写出点P的坐标.
25.(10分)某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y(千克)与销售单价x(元/千克)的函数关系如下图所示:
(1)求y与x的函数解析式(也称关系式);
(2)求这一天销售西瓜获得的利润的最大值.
26.(10分)已知,求的值.
参考答案
一、选择题(每小题3分,共30分)
1、A
2、C
3、D
4、A
5、C
6、A
7、C
8、A
9、C
10、C
二、填空题(每小题3分,共24分)
11、3π
12、1.
13、6
14、1.
15、8
16、( ,2).
17、-6
18、50.
三、解答题(共66分)
19、(1)见解析
(2)公平,理由见解析
20、
21、(1)3,12;(2)D的坐标为
22、(1)见解析;(2)2
23、(1)y=x2+x﹣2;(2)△PBC面积的最大值为2;(3)P(﹣3,﹣)或P(﹣5,);(4)存在,点M(﹣1,﹣),△AMC周长的最小值为.
24、(1)2;(2)2;(3)(2,2),(6,﹣2)或(﹣6,﹣2)
25、 (1)y与x的函数解析式为;(2)这一天销售西瓜获得利润的最大值为1250元.
26、9
重庆市第十八中学2023-2024学年数学九上期末学业水平测试模拟试题含答案: 这是一份重庆市第十八中学2023-2024学年数学九上期末学业水平测试模拟试题含答案,共9页。试卷主要包含了考生要认真填写考场号和座位序号,一元二次方程的根的情况为,如图,在中,,,于点,若反比例函数y= 的图象经过点等内容,欢迎下载使用。
2023-2024学年陕西师西安市高新一中学数学九上期末学业水平测试模拟试题含答案: 这是一份2023-2024学年陕西师西安市高新一中学数学九上期末学业水平测试模拟试题含答案,共7页。试卷主要包含了若反比例函数y= 的图象经过点等内容,欢迎下载使用。
2023-2024学年福建省福州市华伦中学数学九上期末学业水平测试模拟试题含答案: 这是一份2023-2024学年福建省福州市华伦中学数学九上期末学业水平测试模拟试题含答案,共7页。