2023-2024学年贵州省铜仁地区松桃县数学九上期末检测模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)
1.已知线段a是线段b,c的比例中项,则下列式子一定成立的是( )
A.B.C.D.
2.已知点(3,﹣4)在反比例函数的图象上,则下列各点也在该反比例函数图象上的是( )
A.(3,4)B.(﹣3,﹣4)C.(﹣2,6)D.(2,6)
3.目前,支付宝平台入驻了不少的理财公司,推出了一些理财产品.李阿姨用10000元本金购买了一款理财产品,到期后自动续期,两期结束后共收回本息10926元设此款理财产品每期的平均收益率为x,则根据题意可得方程( )
A.B.
C.D.
4.下列方程中,是关于的一元二次方程的是( )
A.B.C.D.
5.如图,两个同心圆(圆心相同半径不同的圆)的半径分别为6cm和3cm,大圆的弦AB与小圆相切,则劣弧AB的长为( )
A.2πcmB.4πcmC.6πcmD.8πcm
6.点在二次函数y=x2+3x﹣5的图像上,x与y对应值如下表:
那么方程x2+3x﹣5=0的一个近似根是( )
A.1B.1.1C.1.2D.1.3
7.教育局组织学生篮球赛,有x支球队参加,每两队赛一场时,共需安排45场比赛,则符合题意的方程为( )
A.B.C.D.
8.如图,直线y=x+3与x、y轴分别交于A、B两点,则cs∠BAO的值是( )
A.B.C.D.
9.如图直角三角板∠ABO=30°,直角项点O位于坐标原点,斜边AB垂直于x轴,顶点A在函数的y1=图象上,顶点B在函数y2=的图象上,则=( )
A.B.C.D.
10.对于两个不相等的实数,我们规定符号表示中的较大值,如:,按照这个规定,方程的解为( )
A.2B.
C.或D.2或
二、填空题(每小题3分,共24分)
11.如图,A、B、C是小正方形的顶点,且每个小正方形的边长为1,则tan∠BAC的值为______.
12.已知点P是正方形ABCD内部一点,且△PAB是正三角形,则∠CPD=_____度.
13.如图,C,D是抛物线y=(x+1)2﹣5上两点,抛物线的顶点为E,CD∥x轴,四边形ABCD为正方形,AB边经过点E,则正方形ABCD的边长为_____.
14.如图,甲、乙两楼之间的距离为30米,从甲楼测得乙楼顶仰角为α=30°,观测乙楼的底部俯角为β=45°,乙楼的高h=_____米(结果保留整数≈1.7,≈1.4).
15.如图,在平面直角坐标系中,OB在x轴上,∠ABO=90°,点A的坐标为(2,4),将△AOB绕点A逆时针旋转90°,点O的对应点C恰好落在反比例函数y=的图象上,则k的值为_____.
16.如图,四边形ABCD内接于⊙O,AD∥BC,直线EF是⊙O的切线,B是切点.若∠C=80°,∠ADB=54°,则∠CBF=____°.
17.在中,,,在外有一点,且,则的度数是__________.
18.在平面直角坐标系中,点P的坐标为(﹣4,0),半径为1的动圆⊙P沿x轴正方向运动,若运动后⊙P与y轴相切,则点P的运动距离为______.
三、解答题(共66分)
19.(10分)在一个不透明的袋子中,装有除颜色外都完全相同的4个红球和若干个黄球.
如果从袋中任意摸出一个球是红球的概率为,那么袋中有黄球多少个?
在的条件下如果从袋中摸出一个球记下颜色后放回,再摸出一个球,用列表或画树状图的方法求出两次摸出不同颜色球的概率.
20.(6分)省射击队为从甲、乙两名运动员中选拔一人参加全国比赛,对他们进行了六次测试,测试成绩如下表(单位:环):
(1)根据表格中的数据,可计算出甲的平均成绩是 环(直接写出结果);
(2)已知乙的平均成绩是9环,试计算其第二次测试成绩的环数;
(3)分别计算甲、乙六次测试成绩的方差,根据计算的结果,你认为推荐谁参加全国比赛更合适,请说明理由.
(计算方差的公式:)
21.(6分)如图,直线y1=3x﹣5与反比例函数y2=的图象相交A(2,m),B(n,﹣6)两点,连接OA,OB.
(1)求k和n的值;
(2)求△AOB的面积;
(3)直接写出y1> y2时自变量x的取值范围.
22.(8分)如图,是的直径,点在上,,FD切于点,连接并延长交于点,点为中点,连接并延长交于点,连接,交于点,连接.
(1)求证:;
(2)若的半径为,求的长.
23.(8分) “扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量(件)与销售单价(元)之间存在一次函数关系,如图所示.
(1)求与之间的函数关系式;
(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?
(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.
24.(8分)如图,在平面直角坐标系中,的三个顶点坐标分别为.
(1)画出,使与关于点成中心对称,并写出点的对应点的坐标_____________;
(2)以原点为位似中心,位似比为1:2,在轴的左侧,画出将放大后的,并写出点的对应点的坐标___________________;
(3)___________________.
25.(10分)解下列一元二次方程.
(1)x2+x-6=1;
(2)2(x-1)2-8=1.
26.(10分)某学校为了解学生“第二课堂“活动的选修情况,对报名参加A.跆拳道,B.声乐,C.足球,D.古典舞这四项选修活动的学生(每人必选且只能选修一项)进行抽样调查.并根据收集的数据绘制了图①和图②两幅不完整的统计图.
根据图中提供的信息,解答下列问题:
(1)本次调查的学生共有 人;在扇形统计图中,B所对应的扇形的圆心角的度数是 ;
(2)将条形统计图补充完整;
(3)在被调查选修古典舞的学生中有4名团员,其中有1名男生和3名女生,学校想从这4人中任选2人进行古典舞表演.请用列表或画树状图的方法求被选中的2人恰好是1男1女的概率.
参考答案
一、选择题(每小题3分,共30分)
1、B
2、C
3、B
4、C
5、B
6、C
7、A
8、A
9、D
10、D
二、填空题(每小题3分,共24分)
11、1
12、1
13、
14、1
15、1
16、46°
17、、
18、3或1
三、解答题(共66分)
19、(1)袋中有黄球有2个(2)
20、(1) 9 ;(2) 7 ;(3),,选甲,理由见解析.
21、(1)k=3,n=;(1);(3) 或 x>1.
22、(1)证明见解析;(2).
23、(1);(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元.
24、(1)画图见解析,;(2)画图见解析,;(3).
25、(1);(2)
26、(1)200、144;(2)补全图形见解析;(3)被选中的2人恰好是1男1女的概率.
第一次
第二次
第三次
第四次
第五次
第六次
甲
10
8
9
8
10
9
乙
10
10
10
9
8
贵州省铜仁地区松桃县2023-2024学年九上数学期末学业质量监测模拟试题含答案: 这是一份贵州省铜仁地区松桃县2023-2024学年九上数学期末学业质量监测模拟试题含答案,共6页。试卷主要包含了下面的函数是反比例函数的是等内容,欢迎下载使用。
贵州省铜仁市松桃县2023-2024学年数学八上期末达标检测模拟试题含答案: 这是一份贵州省铜仁市松桃县2023-2024学年数学八上期末达标检测模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,已知,则的大小关系是,用科学记数法表示为等内容,欢迎下载使用。
贵州省铜仁地区松桃县2023-2024学年八上数学期末质量跟踪监视模拟试题含答案: 这是一份贵州省铜仁地区松桃县2023-2024学年八上数学期末质量跟踪监视模拟试题含答案,共7页。试卷主要包含了若分式的值为0,则,的相反数是,下列各式计算正确的是,已知,则的值是等内容,欢迎下载使用。