上海市延安实验2023-2024学年数学九上期末检测模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.如图,在菱形中,,,,则的值是( )
A.B.2C.D.
2.在同一直角坐标系中,反比例函数y=与一次函数y=ax+b的图象可能是( )
A.B.
C.D.
3.双曲线y=在第一、三象限内,则k的取值范围是( )
A.k>0B.k<0C.k>1D.k<1
4.如图,把绕点逆时针旋转,得到,点恰好落在边上的点处,连接,则的度数为( )
A.B.C.D.
5.已知二次函数的图象如图所示,下列3个结论:
①;②b<a+c;③,其中正确的是( )
A.①②B.①③C.②③D.①②③
6.已知二次函数自变量的部分取值和对应函数值如表:
则在实数范围内能使得成立的取值范围是( )
A.B.C.D.或
7.下列命题中,是真命题的是
A.两条对角线互相平分的四边形是平行四边形
B.两条对角线相等的四边形是矩形
C.两条对角线互相垂直的四边形是菱形
D.两条对角线互相垂直且相等的四边形是正方形
8.在一个不透明的盒子里有2个红球和n个白球,这些球除颜色外其余完全相同,摇匀后随机摸出一个,摸到红球的概率是,则n的值为( )
A.3B.5C.8D.10
9.已知函数的图象过点,则该函数的图象必在( )
A.第二、三象限B.第二、四象限
C.第一、三象限D.第三、四象限
10.如图,菱形ABCD的边长为2,∠A=60°,以点B为圆心的圆与AD、DC相切,与AB、CB的延长线分别相交于点E、F,则图中阴影部分的面积为( )
A.B.C.D.
二、填空题(每小题3分,共24分)
11.已知点,都在反比例函数图象上,则____(填“”或“”或“”).
12.从一批节能灯中随机抽取40只进行检查,发现次品2只,则在这批节能灯中随机抽取一只是次品的概率为_______.
13.二次函数y=ax2+bx+c(a≠0)的图像如图所示,当y<3时,x的取值范围是____.
14.在一个不透明的盒子中装有n个小球,它们只有颜色上的区别,其中有2个红球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复试验后发现,摸到红球的频率稳定于0.2,那么可以推算出n大约是 ________.
15.若分别是方程的两实根,则的值是__________.
16.抛物线y=﹣x2+bx+c的部分图象如图所示,若y>0,则x的取值范围是_____.
17.某种传染病,若有一人感染,经过两轮传染后将共有49人感染.设这种传染病每轮传染中平均一个人传染了x个人,列出方程为______.
18.抛物线y=(x﹣1)2﹣2与y轴的交点坐标是_____.
三、解答题(共66分)
19.(10分)已知四边形ABCD中,E,F分别是AB,AD边上的点,DE与CF相交于点G.
(1)如图①,若四边形ABCD是矩形,且DE⊥CF,求证:.
(2)如图②,若四边形ABCD是平行四边形,要使成立,完成下列探究过程:
要使,转化成,显然△DEA与△CFD不相似,考虑,需要△DEA∽△DFG,只需∠A=∠________;另一方面,只要,需要△CFD∽△CDG,只需∠CGD=∠________.由此探究出使成立时,∠B与∠EGC应该满足的关系是________.
(3)如图③,若AB=BC=6,AD=CD=8,∠BAD=90°,DE⊥CF,那么的值是多少?(直接写出结果)
20.(6分)在一个不透明的布袋里装有3个标有1,2,3的小球,它们的形状,大小完全相同,李强从布袋中随机取出一个小球,记下数字为x,然后放回袋中搅匀,王芳再从袋中随机取出一个小球,记下数字为y,这样确定了点M的坐标(x,y).
(1)用列表或画树状图(只选其中一种)的方法表示出点M所有可能的坐标;
(2)求点M(x,y)在函数y=x2图象上的概率.
21.(6分)如图,已知抛物线y=-x2+mx+3与x轴交于点A、B两点,与y轴交于C点,点B的坐标为(3,0),抛物线与直线y=-x+3交于C、D两点.连接BD、AD.
(1)求m的值.
(2)抛物线上有一点P,满足S△ABP=4S△ABD,求点P的坐标.
22.(8分)如图,已知抛物线y=ax2+bx+5经过A(﹣5,0),B(﹣4,﹣3)两点,与x轴的另一个交点为C,顶点为D,连结CD.
(1)求该抛物线的表达式;
(2)点P为该抛物线上一动点(与点B、C不重合),设点P的横坐标为t.
①当点P在直线BC的下方运动时,求△PBC的面积的最大值;
②该抛物线上是否存在点P,使得∠PBC=∠BCD?若存在,求出所有点P的坐标;若不存在,请说明理由.
23.(8分)如图1,在平面直角坐标系中,已知抛物线与轴交于,两点,与轴交于点.
(1)求抛物线的函数表达式;
(2)若点P是位于直线BC上方抛物线上的一个动点,求△BPC面积的最大值;
(3)若点D是y轴上的一点,且以B,C,D为顶点的三角形与相似,求点D的坐标;
(4)若点E为抛物线的顶点,点F(3,a)是该抛物线上的一点,在轴、轴上分别找点M、N,使四边形EFMN的周长最小,求出点M、N的坐标.
24.(8分)如图,在Rt△ABC中,∠A=90°.AB=8cm,AC=6cm,若动点D从B出发,沿线段BA运动到点A为止(不考虑D与B,A重合的情况),运动速度为2cm/s,过点D作DE∥BC交AC于点E,连接BE,设动点D运动的时间为x(s),AE的长为y(cm).
(1)求y关于x的函数表达式,并写出自变量x的取值范围;
(2)当x为何值时,△BDE的面积S有最大值?最大值为多少?
25.(10分)如图,已知抛物线 y=x2+2x 的顶点为 A,直线 y=x+2 与抛物线交于 B,C 两点.
(1)求 A,B,C 三点的坐标;
(2)作 CD⊥x 轴于点 D,求证:△ODC∽△ABC;
(3)若点 P 为抛物线上的一个动点,过点 P 作 PM⊥x 轴于点 M,则是否还存在除 C 点外的其他位置的点,使以 O,P,M 为顶点的三角形与△ABC 相似? 若存在,请求出这样的 P 点坐标;若不存在,请说明理由.
26.(10分)某种蔬菜的销售单价y1与销售月份x之间的关系如图(1)所示,成本y2与销售月份之间的关系如图(2)所示(图(1)的图象是线段图(2)的图象是抛物线)
(1)分别求出y1、y2的函数关系式(不写自变量取值范围);
(2)通过计算说明:哪个月出售这种蔬菜,每千克的收益最大?
参考答案
一、选择题(每小题3分,共30分)
1、B
2、D
3、C
4、D
5、A
6、C
7、A
8、C
9、B
10、A
二、填空题(每小题3分,共24分)
11、
12、
13、-1<x<3
14、1
15、3
16、-3<x<1
17、x(x+1)+x+1=1.
18、(0,﹣1)
三、解答题(共66分)
19、(1)证明见解析;(2)DGF,CDF,∠B+∠EGC=180°;(3).
20、(1)(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),见解析;(2)
21、(1)m=2 ;(2)P(1+,-9)或P(1-,-9)
22、 (1)y=x2+6x+5;(2)①S△PBC的最大值为;②存在,点P的坐标为P(﹣,﹣)或(0,5).
23、(1);(2)△BPC面积的最大值为 ;(3)D的坐标为(0,1)或(0,);(4)M(,0),N(0,)
24、(1)(0<x<4);(1)当x=1时,S△BDE最大,最大值为6cm1.
25、(1)B(﹣2,0),C(1,3);(2)见解析;(3)存在这样的点 P,坐标为(﹣,﹣)或(﹣,)或(﹣5,15).
26、(1)y1=;y2=x2﹣4x+2;(2)5月出售每千克收益最大,最大为.
…
-2
-1
0
1
2
3
…
…
-5
0
3
4
3
0
…
上海市延安实验初级中学2023-2024学年数学九上期末达标检测试题含答案: 这是一份上海市延安实验初级中学2023-2024学年数学九上期末达标检测试题含答案,共8页。试卷主要包含了二次根式中x的取值范围是,下列事件中,是必然事件的是等内容,欢迎下载使用。
2023-2024学年陕西省延安市实验中学九上数学期末经典试题含答案: 这是一份2023-2024学年陕西省延安市实验中学九上数学期末经典试题含答案,共8页。
上海市延安初级中学2023-2024学年数学九上期末质量检测试题含答案: 这是一份上海市延安初级中学2023-2024学年数学九上期末质量检测试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,若,则代数式的值等内容,欢迎下载使用。