北京市部分区2023-2024学年九上数学期末检测模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)
1.下列函数关系式中,是的反比例函数的是( )
A.B.C.D.
2.已知二次函数y=ax2+bx+c(a<0<b)的图像与x轴只有一个交点,下列结论:①x<0时,y随x增大而增大;②a+b+c<0;③关于x的方程ax2+bx+c+2=0有两个不相等的实数根.其中所有正确结论的序号是( )
A.①②B.②③C.①③D.①②③
3.关于x的方程3x2﹣2x+1=0的根的情况是( )
A.有两个相等的实数根 B.有两个不相等的实数根
C.没有实数根 D.不能确定
4.已知△ABC∽△DEF, ∠A=85°;∠F=50°,那么csB的值是( )
A.1B.C.D.
5.二次函数图像的顶点坐标是( )
A.B.C.D.
6.方程x(x﹣1)=0的解是( ).
A.x=1B.x=0C.x1=1,x2=0D.没有实数根
7.如图,在平行四边形ABCD中,E是AB的中点,CE和BD交于点O,设△OCD的面积为m,△OEB的面积为,则下列结论中正确的是( )
A.m=5B.m=C.m=D.m=10
8.二次函数y=a+bx+c的图象如图所示,则下列关系式错误的是( )
A.a<0B.b>0C.﹣4ac>0D.a+b+c<0
9.已知反比例函数的图象经过点(2,-2),则k的值为
A.4B.C.-4D.-2
10.下列说法中正确的是( )
A.必然事件发生的概率是0
B.“任意画一个等边三角形,其内角和是180°”是随机事件
C.投一枚图钉,“钉尖朝上”的概率不能用列举法求得
D.如果明天降水的概率是50%,那么明天有半天都在下雨
二、填空题(每小题3分,共24分)
11.请写出一个开口向上,并且与y轴交于点(0,-1)的抛物线的表达式:______
12.如图,某水平地面上建筑物的高度为AB,在点D和点F处分别竖立高是2米的标杆CD和EF,两标杆相隔52米,并且建筑物AB、标杆CD和EF在同一竖直平面内,从标杆CD后退2米到点G处,在G处测得建筑物顶端A和标杆顶端C在同一条直线上;从标杆FE后退4米到点H处,在H处测得建筑物顶端A和标杆顶端E在同一条直线上,则建筑物的高是__________米.
13.将一块弧长为2π的半圆形铁皮围成一个圆锥的侧面(接头处忽略不计),则围成的圆锥的高为____.
14.阅读对话,解答问题:
分别用、表示小冬从小丽、小兵袋子中抽出的卡片上标有的数字,则在(,)的所有取值中使关于的一元二次方程有实数根的概率为_________.
15.为估计某水库鲢鱼的数量,养鱼户李老板先捞上150条鲢鱼并在鲢鱼身上做红色的记号,然后立即将这150条鲢鱼放回水库中,一周后,李老板又捞取200条鲢鱼,发现带红色记号的鱼有三条,据此可估计出该水库中鲢鱼约有________条.
16.已知圆锥的侧面积为20πcm2,母线长为5cm,则圆锥底面半径为______cm.
17.在平面直角坐标系中,与位似,位似中心为原点,点与点是对应顶点,且点A,点的坐标分别是,,那么与的相似比为__________.
18.如图,已知菱形的面积为,的长为,则的长为__________.
三、解答题(共66分)
19.(10分)已知关于的一元二次方程有两个实数根,.
(1)求的取值范围:
(2)当时,求的值.
20.(6分)定义:连结菱形的一边中点与对边的两端点的线段把它分成三个三角形,如果其中有两个三角形相似,那么称这样的菱形为自相似菱形.
(1)判断下列命题是真命题,还是假命题?
①正方形是自相似菱形;
②有一个内角为60°的菱形是自相似菱形.
③如图1,若菱形ABCD是自相似菱形,∠ABC=α(0°<α<90°),E为BC中点,则在△ABE,△AED,△EDC中,相似的三角形只有△ABE与△AED.
(2)如图2,菱形ABCD是自相似菱形,∠ABC是锐角,边长为4,E为BC中点.
①求AE,DE的长;
②AC,BD交于点O,求tan∠DBC的值.
21.(6分)将四人随机分成甲、乙两组参加羽毛球比赛,每组两人.
(1)在甲组的概率是多少?
(2)都在甲组的概率是多少?
22.(8分)某养殖场计划用96米的竹篱笆围成如图所示的①、②、③三个养殖区域,其中区域①是正方形,区域②和③是矩形,且AG∶BG=3∶1.设BG的长为1x米.
(1)用含x的代数式表示DF= ;
(1)x为何值时,区域③的面积为180平方米;
(3)x为何值时,区域③的面积最大?最大面积是多少?
23.(8分)因粤港澳大湾区和中国特色社会主义先行示范区的双重利好,深圳已成为国内外游客最喜欢的旅游目的地城市之一.深圳著名旅游“网红打卡地”东部华侨城景区在2018年春节长假期间,共接待游客达20万人次,预计在2020年春节长假期间,将接待游客达28.8万人次.
(1)求东部华侨城景区2018至2020年春节长假期间接待游客人次的年平均增长率;
(2)东部华侨城景区一奶茶店销售一款奶茶,每杯成本价为6元,根据销售经验,在旅游旺季,若每杯定价25元,则平均每天可销售300杯,若每杯价格降低1元,则平均每天可多销售30杯.2020年春节期间,店家决定进行降价促销活动,则当每杯售价定为多少元时,既能让顾客获得最大优惠,又可让店家在此款奶茶实现平均每天6300元的利润额?
24.(8分)已知,如图,抛物线的顶点为,经过抛物线上的两点和的直线交抛物线的对称轴于点.
(1)求抛物线的解析式和直线的解析式.
(2)在抛物线上两点之间的部分(不包含两点),是否存在点,使得?若存在,求出点的坐标;若不存在,请说明理由.
(3)若点在抛物线上,点在轴上,当以点为顶点的四边形是平行四边形时,直接写出满足条件的点的坐标.
25.(10分)某校为了普及推广冰雪活动进校园,准备购进速滑冰鞋和花滑冰鞋用于开展冰上运动,若购进30双速滑冰鞋和20双花滑冰鞋共需8500元;若购进40双速滑冰鞋和10双花滑冰鞋共需8000元.
(1)求速滑冰鞋和花滑冰鞋每双购进价格分别为多少元?
(2)若该校购进花滑冰鞋的数量比购进速滑冰鞋数量的2倍少10双,且用于购置两种冰鞋的总经费不超过9000元,则该校至多购进速滑冰鞋多少双?
26.(10分)如图,矩形AOBC放置在平面直角坐标系xOy中,边OA在y轴的正半轴上,边OB在x轴的正半轴上,抛物线的顶点为F,对称轴交AC于点E,且抛物线经过点A(0,2),点C,点D(3,0).∠AOB的平分线是OE,交抛物线对称轴左侧于点H,连接HF.
(1)求该抛物线的解析式;
(2)在x轴上有动点M,线段BC上有动点N,求四边形EAMN的周长的最小值;
(3)该抛物线上是否存在点P,使得四边形EHFP为平行四边形?如果存在,求出点P的坐标;如果不存在,请说明理由.
参考答案
一、选择题(每小题3分,共30分)
1、C
2、C
3、C
4、C
5、D
6、C
7、B
8、D
9、C
10、C
二、填空题(每小题3分,共24分)
11、y=x2-1(答案不唯一).
12、54
13、
14、.
15、10000
16、1
17、2
18、3
三、解答题(共66分)
19、(1);(2)
20、 (1)见解析;(2)①AE=2,DE=4;②tan∠DBC=.
21、(1)(2)
22、(1)48-11x;(1)x为1或3;(3)x为1时,区域③的面积最大,为140平方米
23、(1)22%;(2)22元.
24、(1)抛物线的表达式为:,直线的表达式为:;(2)存在,理由见解析;点或或或.
25、(1)每双速滑冰鞋购进价格为150元,每双花滑冰鞋购进价格为200元;(2)该校至多购进速滑冰鞋20双.
26、(1)y=x2﹣x+2;(2);(3)不存在点P,使得四边形EHFP为平行四边形,理由见解析.
北京市清华附中2023-2024学年九上数学期末复习检测模拟试题含答案: 这是一份北京市清华附中2023-2024学年九上数学期末复习检测模拟试题含答案,共9页。试卷主要包含了若两个相似三角形的相似比是1等内容,欢迎下载使用。
北京市密云区2023-2024学年九上数学期末教学质量检测模拟试题含答案: 这是一份北京市密云区2023-2024学年九上数学期末教学质量检测模拟试题含答案,共8页。试卷主要包含了下列说法中,正确的是等内容,欢迎下载使用。
北京市景山学校2023-2024学年数学九上期末达标检测模拟试题含答案: 这是一份北京市景山学校2023-2024学年数学九上期末达标检测模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。