四川省自贡市曙光中学2023-2024学年九年级数学第一学期期末调研试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.抛物线的对称轴为
A.B.C.D.
2.在同一直角坐标系中,二次函数与一次函数的大致图象可能( )
A.B.
C.D.
3.如图,已知一次函数 y=kx-2 的图象与 x 轴、y 轴分别交于 A,B 两点,与反比例函数的图象交于点 C,且 AB=AC,则 k 的值为( )
A.1B.2C.3D.4
4.下列方程是关于x的一元二次方程的是( )
A.ax2+bx+c=0B.+x=2C.x2+2x=x2﹣1D.3x2+1=2x+2
5.如图,在△ABC中,AB=AC,D、E、F分别是边AB、AC、BC的中点,若CE=2,则四边形ADFE的周长为( )
A.2B.4C.6D.8
6.如下图形中既是中心对称图形,又是轴对称图形的是( )
A.B.C.D.
7.如图,
点A、B、C是⊙O上的三点,∠BAC= 40°,则∠OBC的度数是( )
A.80°B.40°C.50°D.20°
8.在Rt△ABC中,∠C=90°,AC=3,BC=4,那么csA的值是( )
A.B.C.D.
9.下列事件是必然事件的是( )
A.地球绕着太阳转B.抛一枚硬币,正面朝上
C.明天会下雨D.打开电视,正在播放新闻
10.已知三角形两边的长分别是3和6,第三边的长是方程x2﹣6x+8=0的根,则这个三角形的周长等于( )
A.13B.11C.11 或1D.12或1
二、填空题(每小题3分,共24分)
11.若线段AB=10cm,点C是线段AB的黄金分割点,则AC的长为_____cm.(结果保留根号)
12.一个不透明的袋中装有除颜色外其余均相同的5个红球和3个黄球,从中随机摸出一个,则摸到黄球的概率是________.
13.如图,△ODC是由△OAB绕点O顺时针旋转40°后得到的图形,若点D恰好落在AB上,且∠AOC=105°,则∠C= __.
14.若反比例函数的图象经过点(2,﹣2),(m,1),则m=_____.
15.已知关于x的一元二次方程(m+1)x2+4x+m2+m=0的一个根为0,则m的值是_________.
16.抛物线的顶点坐标是____________
17.已知二次函数y=x2﹣5x+m的图象与x轴有两个交点,若其中一个交点的坐标为(1,0),则另一个交点的坐标为_____.
18.有一条抛物线,三位学生分别说出了它的一些性质:甲说:对称轴是直线;乙说:与轴的两个交点的距离为6;丙说:顶点与轴的交点围成的三角形面积等于9,则这条抛物线解析式的顶点式是______.
三、解答题(共66分)
19.(10分)为弘扬传统文化,某校开展了“传承经典文化,阅读经典名著”活动.为了解七、八年级学生(七、八年级各有600名学生)的阅读效果,该校举行了经典文化知识竞赛.现从两个年级各随机抽取20名学生的竞赛成绩(百分制)进行分析,过程如下:
收集数据:
七年级:79,85,73,80,75,76,87,70,75,94,75,79,81,71,75,80,86,59,83,1.
八年级:92,74,87,82,72,81,94,83,1,83,80,81,71,81,72,1,82,80,70,2.
整理数据:
分析数据:
应用数据:
(1)由上表填空:a= ,b= ,c= ,d= .
(2)估计该校七、八两个年级学生在本次竞赛中成绩在90分以上的共有多少人?
(3)你认为哪个年级的学生对经典文化知识掌握的总体水平较好,请说明理由.
20.(6分)在等边三角形ABC中,点D,E分别在BC,AC上,且DC=AE,AD与BE交于点P,连接PC.
(1)证明:ΔABE≌ΔCAD.
(2)若CE=CP,求证∠CPD=∠PBD.
(3)在(2)的条件下,证明:点D是BC的黄金分割点.
21.(6分)瑞安市曹村镇“八百年灯会”成为温州“申遗”的宝贵项目.某公司生产了一种纪念花灯,每件纪念花灯制造成本为18元.设销售单价x(元),每日销售量y(件)每日的利润w(元).在试销过程中,每日销售量y(件)、每日的利润w(元)与销售单价x(元)之间存在一定的关系,其几组对应量如下表所示:
(1)根据表中数据的规律,分别写出毎日销售量y(件),每日的利润w(元)关于销售单价x(元)之间的函数表达式.(利润=(销售单价﹣成本单价)×销售件数).
(2)当销售单价为多少元时,公司每日能够获得最大利润?最大利润是多少?
(3)根据物价局规定,这种纪念品的销售单价不得高于32元,如果公司要获得每日不低于350元的利润,那么制造这种纪念花灯每日的最低制造成本需要多少元?
22.(8分)已知关于x的一元二次方程x2-3x+m=1.
(1)当m为何值时,方程有两个相等的实数根;
(2)当时,求方程的正根.
23.(8分)四川是闻名天下的“熊猫之乡”,每年到大熊猫基地游玩的游客络绎不绝,大学生小张加入创业项目,项目帮助她在基地附近租店卖创意熊猫纪念品.已知某款熊猫纪念物成本为30元/件,当售价为45元/件时,每天销售250件,售价每上涨1元,销量下降10件.
(1)求每天的销售量y(件)与销售单价x(元)之间的函数关系式;
(2)若每天该熊猫纪念物的销售量不低于240件的情况下,当销售单价为多少元时,每天获取的利润最大?最大利润是多少?
(3)小张决定从这款纪念品每天的销售利润中捐出150元给希望工程,为了保证捐款后这款纪念品每天剩余利润不低于3600元,试确定该熊猫纪念物销售单价的范围.
24.(8分)如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B(3,0)两点,与y轴相交于点C(0,﹣3).
(1)求这个二次函数的表达式;
(2)若P是第四象限内这个二次函数的图象上任意一点,PH⊥x轴于点H,与BC交于点M,连接PC
①求线段PM的最大值;
②当△PCM是以PM为一腰的等腰三角形时,求点P的坐标.
25.(10分)如图,在平行四边形中,过点作垂足为.连接为线段上一点,且.求证:.
26.(10分)如图,矩形ABCD的对角线AC、BD交于点O,∠AOD=60°,AB=,AE⊥BD于点E,求OE的长.
参考答案
一、选择题(每小题3分,共30分)
1、B
2、C
3、B
4、D
5、D
6、B
7、C
8、B
9、A
10、A
二、填空题(每小题3分,共24分)
11、 或
12、
13、
14、-1
15、1
16、
17、(4,0).
18、,
三、解答题(共66分)
19、 (1) 11 , 10 , 78 , 81 ;(2)90人;(3) 八年级的总体水平较好
20、(1)见解析;(2)见解析;(3)见解析
21、(1)y=﹣2x+100,w=﹣2x2+136x﹣1800;(2)当销售单价为34元时,每日能获得最大利润,最大利润是1元;(3)制造这种纪念花灯每日的最低制造成本需要648元.
22、(1)m=;(2).
23、(1)为y=﹣10x+2;(2)3元时每天获取的利润最大利润是4元;(3)45≤x≤1.
24、(1)二次函数的表达式y=x2﹣2x﹣3;(2)①PM最大=;②P(2,﹣3)或(3-,2﹣4).
25、详见解析
26、1
七年级
0
1
0
a
7
1
八年级
1
0
0
7
b
2
平均数
众数
中位数
七年级
78
75
八年级
78
80.5
(元)
19
20
21
30
(件)
62
60
58
40
黄冈中学2023-2024学年九年级数学第一学期期末调研试题含答案: 这是一份黄冈中学2023-2024学年九年级数学第一学期期末调研试题含答案,共9页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。
自贡市重点中学2023-2024学年数学九年级第一学期期末调研模拟试题含答案: 这是一份自贡市重点中学2023-2024学年数学九年级第一学期期末调研模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,下列函数中,是反比例函数的是等内容,欢迎下载使用。
四川省自贡市2023-2024学年九年级数学第一学期期末监测模拟试题含答案: 这是一份四川省自贡市2023-2024学年九年级数学第一学期期末监测模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,如果,那么的值等于等内容,欢迎下载使用。