四川省泸县联考2023-2024学年九上数学期末经典模拟试题含答案
展开这是一份四川省泸县联考2023-2024学年九上数学期末经典模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔,在中,,,则等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)
1.已知关于的一元二次方程的两根为,,则一元二次方程的根为( )
A.0,4B.-3,5C.-2,4D.-3,1
2.如图,在Rt△ABC中,∠C=90°,点P是边AC上一点,过点P作PQ∥AB交BC于点Q,D为线段PQ的中点,BD平分∠ABC,以下四个结论①△BQD是等腰三角形;②BQ=DP;③PA=QP;④=(1+)2;其中正确的结论的个数( )
A.1个B.2个C.3个D.4个
3.若一个圆内接正多边形的内角是,则这个多边形是( )
A.正五边形B.正六边形C.正八边形D.正十边形
4.已知⊙O的半径为5,若OP=6,则点P与⊙O的位置关系是( )
A.点P在⊙O内B.点P在⊙O外C.点P在⊙O上D.无法判断
5.对一批衬衣进行抽检,统计合格衬衣的件数,得到合格衬衣的频数表如下:
估计出售2000件衬衣,其中次品大约是( )
A.50件B.100件C.150件D.200件
6.设计一个摸球游戏,先在一个不透明的盒子中放入个白球,如果希望从中任意摸出个球是白球的概率为,那么应该向盒子中再放入多少个其他颜色的球.(游戏用球除颜色外均相同)( )
A.B.C.D.
7.直角三角形两直角边之和为定值,其面积与一直角边之间的函数关系大致图象是下列中的( )
A.B.C.D.
8.在中,,,则( )
A.60°B.90°C.120°D.135°
9.在一个晴朗的上午,小丽拿着一块矩形木板在阳光下做投影实验,矩形木板在地面上形成的投影不可能是( )
A.B.
C.D.
10.如图,已知⊙O的半径为4,四边形ABCD为⊙O的内接四边形,且AB=4,AD=4,则∠BCD的度数为( )
A.105°B.115°C.120°D.135°
二、填空题(每小题3分,共24分)
11.如图,点P是反比例函数y=(k≠0)的图象上任意一点,过点P作PM⊥x轴,垂足为M.若△POM的面积等于2,则k的值等于_
12.半径为5的圆内接正六边形的边心距为__________.
13.如图,在宽为20m,长为32m的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为540m2,则道路的宽为 .
14.如图,已知菱形中,,为钝角,于点,为的中点,连接,.若,则过、、三点的外接圆半径为______.
15.如图,PA,PB是⊙O的两条切线,切点分别为A,B,连接OA,OP,AB,设OP与AB相交于点C,若∠APB=60°,OC=2cm,则PC=_________cm.
16.已知的半径点在内,则_________(填>或=,<)
17.某种传染病,若有一人感染,经过两轮传染后将共有49人感染.设这种传染病每轮传染中平均一个人传染了x个人,列出方程为______.
18.已知扇形半径为5cm,圆心角为60°,则该扇形的弧长为________cm.
三、解答题(共66分)
19.(10分)如图,,平分,且交于点,平分,且交于点,连接.
(1)求证:四边形是菱形;
(2)若,,求的长.
20.(6分)如图:△ABC与△DEF中,边BC,EF在同一条直线上,AB∥DE,AC∥DF,且BF=CE,求证:AC=DF.
21.(6分)网络销售是一种重要的销售方式.某农贸公司新开设了一家网店,销售当地农产品.其中一种当地特产在网上试销售,其成本为每千克2元.公司在试销售期间,调查发现,每天销售量与销售单价(元)满足如图所示的函数关系(其中).
(1)若,求与之间的函数关系式;
(2)销售单价为多少元时,每天的销售利润最大?最大利润是多少元?
22.(8分)如图,AB为⊙O的直径,C为⊙O上一点,过点C做⊙O 的切线,与AE的延长线交于点D,且AD⊥CD.
(1)求证:AC平分∠DAB;
(2)若AB=10,CD=4,求DE的长.
23.(8分)如图,抛物线经过A(4,0),B(1,0),C(0,-2)三点.
(1)求出抛物线的解析式;
(2)P是抛物线上一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.
24.(8分)已知△ABC内接于⊙O,过点A作直线EF.
(1)如图①所示,若AB为⊙O的直径,要使EF成为⊙O的切线,还需要添加的一个条件是(至少说出两种): 或者 .
(2)如图②所示,如果AB是不过圆心O的弦,且∠CAE=∠B,那么EF是⊙O的切线吗?试证明你的判断.
25.(10分)如图,有一路灯杆AB(底部B不能直接到达),在灯光下,小华在点D处测得自己的影长DF=3m,沿BD方向到达点F处再测得自己的影长FG=4m.如果小华的身高为1.5m,求路灯杆AB的高度.
26.(10分)已知二次函数的图像与轴交于点,与轴的一个交点坐标是.
(1)求二次函数的解析式;
(2)当为何值时,.
参考答案
一、选择题(每小题3分,共30分)
1、B
2、C
3、A
4、B
5、D
6、A
7、A
8、C
9、A
10、A
二、填空题(每小题3分,共24分)
11、-2
12、
13、2m
14、
15、6
16、<
17、x(x+1)+x+1=1.
18、
三、解答题(共66分)
19、(1)证明见解析;(2)
20、见解析.
21、(1);(2)当时,每天的销售利润最大,最大是3200元.
22、(1)见解析;(1)DE=1
23、 (1) y=-x2+x-2;(2)点P为(2,1)或(5,-2)或(-3,-14)或(0,-2).
24、(1)①∠BAE=90°,②∠EAC=∠ABC;(2)EF是⊙O的切线
25、路灯杆AB的高度是1m.
26、(1)y= (x-1)2-9 ;(2)-2
50
100
150
200
500
800
1000
合格频数
42
88
141
176
448
720
900
相关试卷
这是一份四川省泸州泸县联考2023-2024学年九上数学期末教学质量检测模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,已知,若,则的值为,如图,点A,B的坐标分别为,计算的结果是,求出函数解析式.等内容,欢迎下载使用。
这是一份四川省泸州泸县2023-2024学年九上数学期末复习检测模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,下列事件中是必然事件的是等内容,欢迎下载使用。
这是一份四川省泸县联考2023-2024学年九上数学期末经典试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,计算的结果是等内容,欢迎下载使用。