四川省开江县2023-2024学年数学九年级第一学期期末教学质量检测试题含答案
展开这是一份四川省开江县2023-2024学年数学九年级第一学期期末教学质量检测试题含答案,共8页。试卷主要包含了答题时请按要求用笔,sin 30°的值为,如图的中,,且为上一点等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)
1.在正方形ABCD中,AB=3,点E在边CD上,且DE=1,将△ADE沿AE对折到△AFE,延长EF交边BC于点G,连接AG,CF.下列结论,其中正确的有( )个.
(1)CG=FG;(2)∠EAG=45°;(3)S△EFC=;(4)CF=GE
A.1B.2C.3D.4
2.如图,中,,顶点,分别在反比例函数()与()的图象上.则下列等式成立的是( )
A.B.C.D.
3.已知正多边形的边心距与边长的比为,则此正多边形为( )
A.正三角形B.正方形C.正六边形D.正十二边形
4.已知抛物线y=ax2+bx+c的图象如图所示,对称轴为直线x=1.以下结论:①2a>-b;②4a+2b+c>0;③m(am+b)>a+b(m是大于1的实数);④3a+c<0其中正确结论的个数为( )
A.1个B.2个C.3个D.4个
5.下列事件中,是必然事件的是( )
A.经过有交通信号灯的路口,遇到红灯B.明天太阳从西方升起
C.三角形内角和是D.购买一张彩票,中奖
6.如图,四边形ABCD是矩形,点E在线段CB的延长线上,连接DE交AB于点F,∠AED=2∠CED,点G为DF的中点.若BE=1,AG=3,则AB的长是( )
A.B.2C.D.
7.把两个大小相同的正方形拼成如图所示的图案.如果可以随意在图中取点.则这个点取在阴影部分的慨率是( )
A.B.C.D.
8.sin 30°的值为( )
A.B.C.D.
9.如图的中,,且为上一点.今打算在上找一点,在上找一点,使得与全等,以下是甲、乙两人的作法:
(甲)连接,作的中垂线分别交、于点、点,则、两点即为所求
(乙)过作与平行的直线交于点,过作与平行的直线交于点,则、两点即为所求
对于甲、乙两人的作法,下列判断何者正确?( )
A.两人皆正确B.两人皆错误
C.甲正确,乙错误D.甲错误,乙正确
10.如图,是内两条互相垂直的直径,则的度数是( )
A.B.C.D.
二、填空题(每小题3分,共24分)
11.在△ABC中,若AB=5,BC=13,AD是BC边上的高,AD=4,则tanC=_____.
12.如图,在一笔直的海岸线l上有A,B两个观测站,AB=2km,从A测得灯塔P在北偏东60°的方向,从B测得灯塔P在北偏东45°的方向,则灯塔P到海岸线l的距离为_____km.
13.如图,有一张直径为1.2米的圆桌,其高度为0.8米,同时有一盏灯距地面2米,圆桌在水平地面上的影子是,∥,和是光线,建立如图所示的平面直角坐标系,其中点的坐标是.那么点的坐标是_________.
14.从甲、乙、丙三人中任选两人参加“青年志愿者”活动,甲被选中的概率为___.
15.在一个不透明的袋子里,有2个黑球和1个白球,除了颜色外其它都相同,任意摸出一个球,摸到黑球的概率是__________.
16.点(2,3)关于原点对称的点的坐标是_____.
17.一元二次方程(x﹣1)2=1的解是_____.
18.已知非负数a、b、c满足a+b=2,,,则d的取值范围为____.
三、解答题(共66分)
19.(10分)某区为创建《国家义务教育优质均衡发展区》,自2016年以来加大了教育经费的投入,2016年该区投入教育经费9000万元,2018年投入教育经费12960万元,假设该区这两年投入教育经费的年平均增长率相同
(1)求这两年该区投入教育经费的年平均增长率
(2)若该区教育经费的投入还将保持相同的年平均增长率,请你预算2019年该区投入教育经费多少万元
20.(6分)某报社为了解市民对“社会主义核心价值观”的知晓程度,采取随机抽样的方式进行问卷调查,调查结果分为“A非常了解”“B了解”“C基本了解”三个等级,并根据调查结果制作了如下图所示两幅不完整的统计图.
(1)这次调查的市民人数为 , , ;
(2)补全条形统计图;
(3)若该市约有市民1000000人,请你根据抽样调查的结果,估计该市大约有多少人对“社会主义核心价值观”达到“A非常了解”的程度.
21.(6分)甲、乙、丙三人进行乒乓球比赛.他们通过摸球的方式决定首场比赛的两个选手:在一个不透明的口袋中放入两个红球和一个白球,这些球除颜色外其他都相同,将它们搅匀,三人从中各摸出一个球,摸到红球的两人即为首场比赛选手.求甲、丙两人成为比赛选手的概率.(请用画树状图或列表等方法写出分析过程并给出结果.)
22.(8分)用配方法解方程:﹣3x2+2x+1=1.
23.(8分)在Rt△ABC中,∠ACB=90°,AC=1,记∠ABC=α,点D为射线BC上的动点,连接AD,将射线DA绕点D顺时针旋转α角后得到射线DE,过点A作AD的垂线,与射线DE交于点P,点B关于点D的对称点为Q,连接PQ.
(1)当△ABD为等边三角形时,
①依题意补全图1;
②PQ的长为 ;
(2)如图2,当α=45°,且BD=时,求证:PD=PQ;
(3)设BC=t,当PD=PQ时,直接写出BD的长.(用含t的代数式表示)
24.(8分)已知二次函数y=﹣x2+bx+c的图象如图所示,它与x轴的一个交点坐标为(﹣1,0),与y轴的交点坐标为(0,3).
(1)求出b,c的值,并写出此二次函数的解析式;
(2)根据图象,写出函数值y为正数时,自变量x的取值范围.
25.(10分) [问题发现]
如图①,在中,点是的中点,点在边上,与相交于点,若,则_____ ;
[拓展提高]
如图②,在等边三角形中,点是的中点,点在边上,直线与相交于点,若,求的值.
[解决问题]
如图③,在中,,点是的中点,点在直线上,直线与直线相交于点,.请直接写出的长.
26.(10分)如图,在四边形中,,,对角线,交于点,平分,过点作交的延长线于点,连接.
(1)求证:四边形是菱形;
(2)若,,求的长.
参考答案
一、选择题(每小题3分,共30分)
1、C
2、C
3、B
4、A
5、C
6、B
7、C
8、C
9、A
10、C
二、填空题(每小题3分,共24分)
11、或
12、
13、
14、
15、
16、(-2,-3).
17、x=2或0
18、5≤d≤1.
三、解答题(共66分)
19、(1)20%;(2)15552万元
20、(1)500 ,12,32;(2)详见解析;(3)320000
21、.
22、或
23、(1)①详见解析;②1;(1)详见解析;(3)BD=.
24、(1)b=2,c=3,y=-x+2x+3;(2)
25、 [问题发现];[拓展提高];[解决问题]或.
26、(1)证明见解析;(2)2.
相关试卷
这是一份2023-2024学年四川省宜宾市数学九年级第一学期期末教学质量检测试题含答案,共8页。
这是一份四川省开江县2023-2024学年九上数学期末质量检测模拟试题含答案,共8页。
这是一份四川省达州市通川区2023-2024学年数学九年级第一学期期末教学质量检测模拟试题含答案,共8页。