宁夏回族自治区2023-2024学年数学九上期末达标检测试题含答案
展开
这是一份宁夏回族自治区2023-2024学年数学九上期末达标检测试题含答案,共9页。试卷主要包含了答题时请按要求用笔,下列说法正确的是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)
1.下列事件中,必然事件是( )
A.抛掷个均匀的骰子,出现点向上B.人中至少有人的生日相同
C.两直线被第三条直线所截,同位角相等D.实数的绝对值是非负数
2.下列事件中,属于必然事件的是( )
A.明天我市下雨
B.抛一枚硬币,正面朝上
C.走出校门,看到的第一辆汽车的牌照的末位数字是偶数
D.一个口袋中装有2个红球和一个白球,从中摸出2个球,其中有红球
3.如图坐标系中,O(0,0),A(3,3),B(6,0),将△OAB沿直线CD折叠,使点A恰好落在线段OB上的点E处,若OE=,则AC:AD的值是( )
A.1:2B.2:3C.6:7D.7:8
4.如图,AC是电杆AB的一根拉线,现测得BC=6米,∠ABC=90°,∠ACB=52°,则拉线AC的长为( )米.
A. B. C. D.
5.二次函数的图象是一条抛物线,下列关于该抛物线的说法正确的是( )
A.抛物线开口向下B.抛物线与轴有两个交点
C.抛物线的对称轴是直线=1D.抛物线经过点(2,3)
6.如图,△AOB缩小后得到△COD,△AOB与△COD的相似比是3,若C(1,2),则点A的坐标为( )
A.(2,4)B.(2,6)C.(3,6)D.(3,4)
7.一元二次方程的左边配成完全平方后所得方程为( )
A.B.C.D.
8.已知反比例函数的图象经过点,小良说了四句话,其中正确的是( )
A.当时,B.函数的图象只在第一象限
C.随的增大而增大D.点不在此函数的图象上
9.如图,将绕点按逆时针方向旋转后得到,若,则的度数是( )
A.B.C.D.
10.下列说法正确的是( )
A.了解飞行员视力的达标率应使用抽样调查
B.一组数据3,6,6,7,8,9的中位数是6
C.从2000名学生中选出200名学生进行抽样调查,样本容量为2000
D.一组数据1,2,3,4,5的方差是2
二、填空题(每小题3分,共24分)
11.在Rt△ABC中,两直角边的长分别为6和8,则这个三角形的外接圆半径长为_____.
12.一元二次方程的根是 .
13.2018年10月21日,河间市诗经国际马拉松比赛拉开帷幕,电视台动用无人机航拍技术全程录像.如图,是无人机观测AB两选手在某水平公路奔跑的情况,观测选手A处的俯角为,选手B处的俯角为45º.如果此时无人机镜头C处的高度CD=20米,则AB两选手的距离是_______米.
14.如图,PA,PB是⊙O的两条切线,切点分别为A,B,连接OA,OP,AB,设OP与AB相交于点C,若∠APB=60°,OC=2cm,则PC=_________cm.
15.如图,AB为⊙O的直径,C、D为⊙O上的点,弧AD=弧CD.若∠CAB=40°,则∠CAD=_____.
16.如图,在平面直角坐标系中,函数和的图象分别为直线,,过点(1,0)作轴的垂线交于点,过点作轴的垂线交于点,过点作轴的垂线交于点,过点作轴的垂线交于点,…依次进行下去,则点的坐标为_________.
17.如图,在中,,是边上一点,过点作,垂足为,,,,求的长.
18.在一个不透明的口袋中,有大小、形状完全相同,颜色不同的球15个,从中摸出红球的概率为,则袋中红球的个数为_____.
三、解答题(共66分)
19.(10分)如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(﹣1,0),B(4,0),C(0,﹣4)三点,点P是直线BC下方抛物线上一动点.
(1)求这个二次函数的解析式;
(2)是否存在点P,使△POC是以OC为底边的等腰三角形?若存在,求出P点坐标;若不存在,请说明理由;
(3)动点P运动到什么位置时,△PBC面积最大,求出此时P点坐标和△PBC的最大面积.
20.(6分)已知反比例函数y=的图象与一次函数y=kx+m的图象相交于点A(2,1).
(1)分别求出这两个函数的解析式;
(2)当x取什么范围时,反比例函数值大于0;
(3)若一次函数与反比例函数另一交点为B,且纵坐标为﹣4,当x取什么范围时,反比例函数值大于一次函数的值;
(4)试判断点P(﹣1,5)关于x轴的对称点P′是否在一次函数y=kx+m的图象上.
21.(6分)如图,抛物线y=ax2+bx﹣经过点A(1,0)和点B(5,0),与y轴交于点C.
(1)求此抛物线的解析式;
(2)以点A为圆心,作与直线BC相切的⊙A,求⊙A的半径;
(3)在直线BC上方的抛物线上任取一点P,连接PB,PC,请问:△PBC的面积是否存在最大值?若存在,求出这个最大值的此时点P的坐标;若不存在,请说明理由.
22.(8分)宿迁市政府为了方便市民绿色出行,推出了共享单车服务.图①是某品牌共享单车放在水平地面上的实物图,图②是其示意图,其中、都与地面l平行,车轮半径为,,,坐垫与点的距离为.
(1)求坐垫到地面的距离;
(2)根据经验,当坐垫到的距离调整为人体腿长的0.8时,坐骑比较舒适.小明的腿长约为,现将坐垫调整至坐骑舒适高度位置,求的长.
(结果精确到,参考数据:,,)
23.(8分)平面直角坐标系中有点和某一函数图象,过点作轴的垂线,交图象于点,设点,的纵坐标分别为,.如果,那么称点为图象的上位点;如果,那么称点为图象的图上点;如果,那么称点为图象的下位点.
(1)已知抛物线.
① 在点A(-1,0),B(0,-2),C(2,3)中,是抛物线的上位点的是 ;
② 如果点是直线的图上点,且为抛物线的上位点,求点的横坐标的取值范围;
(2)将直线在直线下方的部分沿直线翻折,直线的其余部分保持不变,得到一个新的图象,记作图象.⊙的圆心在轴上,半径为.如果在图象和⊙上分别存在点和点F,使得线段EF上同时存在图象的上位点,图上点和下位点,求圆心的横坐标的取值范围.
24.(8分)求的值.
25.(10分)在日常生活中我们经常会使用到订书机,如图MN是装订机的底座,AB是装订机的托板AB始终与底座平行,连接杆DE的D点固定,点E从A向B处滑动,压柄BC绕着转轴B旋转.已知连接杆BC的长度为20cm,BD= cm,压柄与托板的长度相等.
(1)当托板与压柄的夹角∠ABC=30°时,如图①点E从A点滑动了2cm,求连接杆DE的长度.
(2)当压柄BC从(1)中的位置旋转到与底座垂直,如图②.求这个过程中,点E滑动的距离.(结果保留根号)
26.(10分)如图,在平面直角坐标系中,点B(12,10),过点B作x轴的垂线,垂足为A.作y轴的垂线,垂足为C.点D从O出发,沿y轴正方向以每秒1个单位长度运动;点E从O出发,沿x轴正方向以每秒3个单位长度运动;点F从B出发,沿BA方向以每秒2个单位长度运动.当点E运动到点A时,三点随之停止运动,运动过程中△ODE关于直线DE的对称图形是△O′DE,设运动时间为t.
(1)用含t的代数式分别表示点E和点F的坐标;
(2)若△ODE与以点A,E,F为顶点的三角形相似,求t的值;
(3)当t=2时,求O′点在坐标.
参考答案
一、选择题(每小题3分,共30分)
1、D
2、D
3、B
4、C
5、B
6、C
7、B
8、D
9、A
10、D
二、填空题(每小题3分,共24分)
11、1
12、
13、
14、6
15、25°
16、
17、.
18、
三、解答题(共66分)
19、(1)y=x2﹣3x﹣4;(2)存在,P(,﹣2);(3)当P点坐标为(2,﹣6)时,△PBC的最大面积为1.
20、(1)y=,y=2x﹣3;(2)x>1;(3)x<﹣1.5或1<x<2;(4)点P′在直线上.
21、(1)y=﹣+2x﹣;(2);(3)存在最大值,此时P点坐标(,).
22、(1)99.5(2)3.9
23、(1)①A,C.②;(2)或.
24、4
25、(1)DE=2cm;(2)这个过程中,点E滑动的距离(18-6)cm.
26、(1)E(3t,0),F(12,10﹣2t);(2)t=;(3)O'(,)
相关试卷
这是一份广东省实验中学2023-2024学年九上数学期末达标检测模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,将一副三角尺,下列运算正确的是等内容,欢迎下载使用。
这是一份2023-2024学年新疆乌鲁木齐仟叶学校九上数学期末达标检测模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,函数y=2-2的最小值是,如图,中,,,,则的长为等内容,欢迎下载使用。
这是一份广西省崇左2023-2024学年九上数学期末达标检测试题含答案,共8页。试卷主要包含了抛物线y=ax2+bx+c,如图,四边形的顶点坐标分别为等内容,欢迎下载使用。