山东省济宁市鱼台县2023-2024学年九年级数学第一学期期末监测模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.如图,P是边长为1的正方形ABCD对角线AC上一动点(P与A、C不重合),点E在射线BC上,且PE=PB.设AP=x,△PBE的面积为y.则下列图象中,能表示y与x的函数关系的图象大致是( )
A.B.C.D.
2.平面直角坐标系中,抛物线经变换后得到抛物线,则这个变换可以是( )
A.向左平移2个单位B.向右平移2个单位
C.向左平移4个单位D.向右平移4个单位
3.在下列图形中,既是轴对称图形,又是中心对称图形的是( )
A.B.C.D.
4.如图所示,不能保证△ACD∽△ABC的条件是( )
A.AB:BC=AC:CDB.CD:AD=BC:ACC.CD2=ADDCD.AC2=ABAD
5.某校进行体操队列训练,原有8行10列,后增加40人,使得队伍增加的行数、列数相同,你知道增加了多少行或多少列吗?设增加了行或列,则列方程得( )
A.(8﹣) (10﹣)=8×10﹣40B.(8﹣)(10﹣)=8×10+40
C.(8+)(10+)=8×10﹣40D.(8+)(10+)=8×10+40
6.已知一组数据:2,5,2,8,3,2,6,这组数据的中位数和众数分别是( )
A.中位数是3,众数是2B.中位数是2,众数是3
C.中位数是4,众数是2D.中位数是3,众数是4
7.《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为( )
A.五丈B.四丈五尺C.一丈D.五尺
8.用配方法解一元二次方程时,原方程可变形为( )
A.B.C.D.
9.将抛物线y=2(x-7)2+3平移,使平移后的函数图象顶点落在y轴上,则下列平移中正确的是( )
A.向上平移3个单位 B.向下平移3个单位
C.向左平移7个单位 D.向右平移7个单位
10.某居民区一处圆形下水管道破裂,修理人员准备更换一段新管道.如图所示,污水水面AB宽为80cm,管道顶端最高点到水面的距离为20cm,则修理人员需准备的新管道的半径为( )
A.50cmB.50cmC.100cmD.80cm
二、填空题(每小题3分,共24分)
11.使函数有意义的自变量的取值范围是___________.
12.试写出一个开口方向向上,对称轴为直线x=2,且与y轴的交点坐标为(0,3)的抛物线的解析式为________.
13.二次函数图象的开口向__________.
14.如图,某舰艇上午9时在A处测得灯塔C在其南偏东75°方向上,且该舰艇以每小时10海里的速度沿南偏东15°方向航行,11小时到达B处,在B处测得灯塔C在北偏东75°方向上,则B处到灯塔C的距离为________海里.
15.是方程的解,则的值__________.
16.如图,AB为弓形AB的弦,AB=2,弓形所在圆⊙O的半径为2,点P为弧AB上动点,点I为△PAB的内心,当点P从点A向点B运动时,点I移动的路径长为_____.
17.设分别为一元二次方程的两个实数根,则______.
18.如图,在△ABC中,AD是BC上的高,tanB=cs∠DAC,若sinC=,BC=12,则AD的长_____.
三、解答题(共66分)
19.(10分)如图,直线y=﹣x+1与x轴,y轴分别交于A,B两点,抛物线y=ax2+bx+c过点B,并且顶点D的坐标为(﹣2,﹣1).
(1)求该抛物线的解析式;
(2)若抛物线与直线AB的另一个交点为F,点C是线段BF的中点,过点C作BF的垂线交抛物线于点P,Q,求线段PQ的长度;
(3)在(2)的条件下,点M是直线AB上一点,点N是线段PQ的中点,若PQ=2MN,直接写出点M的坐标.
20.(6分)投资1万元围一个矩形菜园(如图),其中一边靠墙,另外三边选用不同材料建造.墙长24m,平行于墙的边的费用为200元/m,垂直于墙的边的费用为150元/m,设平行于墙的边长为x m
(1)设垂直于墙的一边长为y m,直接写出y与x之间的函数关系式;
(2)若菜园面积为384m2,求x的值;
(3)求菜园的最大面积.
21.(6分)(1)3tan30°-tan45°+2sin60°
(2)
22.(8分)解下列方程:
(1)
(2)
23.(8分)某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元.市场调查发现,若每箱以50元的价格销售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.
(1)求平均每天销售量(箱)与销售价(元/箱)之间的函数关系式.
(2)求该批发商平均每天的销售利润(元)与销售价(元/箱)之间的函数关系式.
(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?
24.(8分)A、B、C三人玩篮球传球游戏,游戏规则是:第一次传球由A将球随机地传给B、C两人中的某一人,以后的每一次传球都是由上次的传球者随机地传给其他两人中的某一人.
(1)求两次传球后,球恰在B手中的概率;
(2)求三次传球后,球恰在A手中的概率.
25.(10分)如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.
(1)求证:四边形ADCF是菱形;
(3)若AC=6,AB=8,求菱形ADCF的面积.
26.(10分)如图:已知▱ABCD,过点A的直线交BC的延长线于E,交BD、CD于F、G.
(1)若AB=3,BC=4,CE=2,求CG的长;
(2)证明:AF2=FG×FE.
参考答案
一、选择题(每小题3分,共30分)
1、D
2、B
3、B
4、D
5、D
6、A
7、B
8、B
9、C
10、A
二、填空题(每小题3分,共24分)
11、且
12、答案不唯一,如y=x2﹣4x+2,即y=(x﹣2)2﹣1.
13、下
14、20
15、
16、
17、1
18、1
三、解答题(共66分)
19、(1)y=x2+2x+1;(2)5;(3)M(,﹣)或(﹣,)
20、(1)见详解;(2)x=18;(3) 416 m2.
21、(1);(2)
22、(1);(2)
23、(1);(2),;(3)当每箱苹果的销售价为55元时,可以获得最大利润,最大利润为1125元.
24、(1);(2) .
25、(1)详见解析;(2)24
26、(1)1;(2)证明见解析
03,山东省济宁市鱼台县2023-2024学年九年级上学期期末数学试题: 这是一份03,山东省济宁市鱼台县2023-2024学年九年级上学期期末数学试题,共21页。
山东省济宁市鱼台县2023-2024学年数学九上期末综合测试试题含答案: 这是一份山东省济宁市鱼台县2023-2024学年数学九上期末综合测试试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,下列方程中,为一元二次方程的是,设A等内容,欢迎下载使用。
山东省济宁市市中学区2023-2024学年数学八上期末监测模拟试题含答案: 这是一份山东省济宁市市中学区2023-2024学年数学八上期末监测模拟试题含答案,共7页。试卷主要包含了下列从左到右的变形等内容,欢迎下载使用。