山东省龙口市第五中学2023-2024学年九上数学期末质量检测试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)
1.如图为二次函数y=ax2+bx+c的图象,在下列说法中①ac>0;②方程ax2+bx+c=0的根是x1=﹣1,x2=3;③a+b+c<0;④当x>1时,y随x的增大而增大,正确的是( )
A.①③B.②④C.①②④D.②③④
2.如图,在x轴的上方,直角∠BOA绕原点O按顺时针方向旋转.若∠BOA的两边分别与函数、的图象交于B、A两点,则∠OAB大小的变化趋势为( )
A.逐渐变小B.逐渐变大C.时大时小D.保持不变
3.下列说法正确的是( ).
A.“购买1张彩票就中奖”是不可能事件
B.“概率为0.0001的事件”是不可能事件
C.“任意画一个三角形,它的内角和等于180°”是必然事件
D.任意掷一枚质地均匀的硬币10次,正面向上的一定是5次
4.如图,BC是⊙O的弦,OA⊥BC,∠AOB=55°,则∠ADC的度数是( )
A.25°B.55°C.45°D.27.5°
5.如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把CDB旋转90°,则旋转后点D的对应点 的坐标是( )
A.(2,10)B.(﹣2,0)
C.(2,10)或(﹣2,0)D.(10,2)或(﹣2,0)
6.如图,一张扇形纸片OAB,∠AOB=120°,OA=6,将这张扇形纸片折叠,使点A与点O重合,折痕为CD,则图中未重叠部分(即阴影部分)的面积为( )
A.9B.12π﹣9C.D.6π﹣
7.如图,已知A,B是反比例函数y= (k>0,x>0)图象上的两点,BC∥x轴,交y轴于点C,动点P从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C,过P作PM⊥x轴,垂足为M.设三角形OMP的面积为S,P点运动时间为t,则S关于x的函数图象大致为( )
A.B.C.D.
8.为了解某地区九年级男生的身高情况,随取了该区100名九年级男生,他们的身高x(cm)统计如根据以上结果,抽查该地区一名九年级男生,估计他的身高不高于180cm的概率是( )
A.0.05B.0.38C.0.57D.0.95
9.下列图形是中心对称图形的是( )
A.B.C.D.
10.如图,矩形草坪ABCD中,AD=10 m,AB=m.现需要修一条由两个扇环构成的便道HEFG,扇环的圆心分别是B,D.若便道的宽为1 m,则这条便道的面积大约是( )(精确到0.1 m2)
A.9.5 m2B.10.0 m2C.10.5 m2D.11.0 m2
二、填空题(每小题3分,共24分)
11.如图,点E、F、G、H分别是任意四边形ABCD中AD、BD、BC、CA的中点,当四边形ABCD的边至少满足 条件时,四边形EFGH是矩形.
12.在中,,如图①,点从的顶点出发,沿的路线以每秒1个单位长度的速度匀速运动到点,在运动过程中,线段的长度随时间变化的关系图象如图②所示,则的长为__________.
13.已知点A关于原点的对称点坐标为(﹣1,2),则点A关于x轴的对称点的坐标为_________
14.菱形的两条对角线长分别是6和8,则菱形的边长为_____.
15.如图,让此转盘自由转动两次,两次指针都落在阴影部分区域(边界宽度忽略不记)的概率是____________.
16.某厂四月份生产零件50万个,已知五、六月份平均每月的增长率是20%,则第二季度共生产零件_____万个.
17.如图,D、E分别是△ABC的边AB、AC上的点,连接DE,要使△ADE∽△ACB,还需添加一个条件 (只需写一个).
18.如图,在平行四边形中,是线段上的点,如果,,连接与对角线交于点,则_______.
三、解答题(共66分)
19.(10分)在不透明的箱子中,装有红、白、黑各一个球,它们除了颜色之外,没有其他区别.
(1)随机地从箱子里取出一个球,则取出红球的概率是多少?
(2)随机地从箱子里取出1个球,然后放回,再摇匀取出第二个球,请你用画树状图或列表的方法表示所有等可能的结果,并求两次取出相同颜色球的概率.
20.(6分)如图,在中,,为边上的中线,于点E.
(1)求证:;
(2)若,,求线段的长.
21.(6分)如图,已知矩形的边,,点、分别是、边上的动点.
(1)连接、,以为直径的交于点.
①若点恰好是的中点,则与的数量关系是______;
②若,求的长;
(2)已知,,是以为弦的圆.
①若圆心恰好在边的延长线上,求的半径:
②若与矩形的一边相切,求的半径.
22.(8分)函数的图象的对称轴为直线.
(1)求的值;
(2)将函数的图象向右平移2个单位,得到新的函数图象.
①直接写出函数图象的表达式;
②设直线与轴交于点A,与y轴交于点B,当线段AB与图象只有一个公共点时,直接写出的取值范围.
23.(8分)赵化鑫城某超市购进了一批单价为16元的日用品,销售一段时间后,为获得更多的利润,商场决定提高销售的价格,经试验发现,若按每件20元销售,每月能卖360件;若按每件25元销售,每月能卖210件;若每月的销售件数y(件)与价格x(元/件)满足y=kx+b.
(1)求出k与b的值,并指出x的取值范围?
(2)为了使每月获得价格利润1920元,商品价格应定为多少元?
(3)要使每月利润最大,商品价格又应定为多少?最大利润是多少?
24.(8分)如图,海中有两个小岛,,某渔船在海中的处测得小岛D位于东北方向上,且相距,该渔船自西向东航行一段时间到达点处,此时测得小岛恰好在点的正北方向上,且相距,又测得点与小岛相距.
(1)求的值;
(2)求小岛,之间的距离(计算过程中的数据不取近似值).
25.(10分)随着粤港澳大湾区建设的加速推进,广东省正加速布局以5G等为代表的战略性新兴产业,据统计,目前广东5G基站的数量约1.5万座,计划到2020年底,全省5G基站数是目前的4倍,到2022年底,全省5G基站数量将达到17.34万座.
(1)计划到2020年底,全省5G基站的数量是多少万座?;
(2)按照计划,求2020年底到2022年底,全省5G基站数量的年平均增长率.
26.(10分)如图,在平面直角坐标系中,已知抛物线与轴交于,两点,与轴交于点,连接.
(1)求抛物线的解析式;
(2)点在抛物线的对称轴上,当的周长最小时,点的坐标为_____________;
(3)点是第四象限内抛物线上的动点,连接和.求面积的最大值及此时点的坐标;
(4)若点是对称轴上的动点,在抛物线上是否存在点,使以点、、、为顶点的四边形是平行四边形?若存在,请直接写出点的坐标;若不存在,请说明理由.
参考答案
一、选择题(每小题3分,共30分)
1、D
2、D
3、C
4、D
5、C
6、A
7、A
8、D
9、B
10、C
二、填空题(每小题3分,共24分)
11、AB⊥CD
12、
13、 (1,2)
14、1
15、
16、1
17、
18、
三、解答题(共66分)
19、(1);(2)
20、(1)见解析;(2).
21、(1)①;②1.5;(2)①5;②、,、5.
22、(1)m=3;(2)①;②.
23、(1)k=﹣30,b=960,x取值范围为16≤x≤32;(2)商品的定价为24元;(3)商品价格应定为24元,最大利润是1元.
24、 (1);(2)小岛、相距.
25、(1)到2020年底,全省5G基站的数量是6万座;(2)2020年底到2022年底,全省5G基站数量的年平均增长率为.
26、(1);(2);(3)面积最大为,点坐标为;(4)存在点,使以点、、、为顶点的四边形是平行四边形,,点坐标为,,.
组别(cm)
x≤160
160<x≤170
170<x≤180
x>180
人数
15
42
38
5
山东省烟台市、龙口市2023-2024学年九上数学期末经典试题含答案: 这是一份山东省烟台市、龙口市2023-2024学年九上数学期末经典试题含答案,共9页。试卷主要包含了考生必须保证答题卡的整洁,下列说法正确的是等内容,欢迎下载使用。
山东省重点中学2023-2024学年九上数学期末教学质量检测试题含答案: 这是一份山东省重点中学2023-2024学年九上数学期末教学质量检测试题含答案,共7页。试卷主要包含了答题时请按要求用笔,下列结论正确的是等内容,欢迎下载使用。
山东省乐陵市实验中学2023-2024学年九上数学期末质量检测模拟试题含答案: 这是一份山东省乐陵市实验中学2023-2024学年九上数学期末质量检测模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔,下列说法正确的是等内容,欢迎下载使用。