山西省太原市2023-2024学年数学九年级第一学期期末经典模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.如图,四边形ABCD内接于⊙O,AD∥BC,BD平分∠ABC,∠A=130°,则∠BDC的度数为( )
A.100°B.105°C.110°D.115°
2.已知关于x的一元二次方程有一个根为,则a的值为( )
A.0B.C.1D.
3.中国“一带一路”战略给沿线国家和地区带来很大的经济效益,沿线某地区居民2016年年收入300美元,预计2018年年收入将达到1500美元,设2016年到2018年该地区居民年人均收入平均增长率为x,可列方程为( )
A.300(1+x)2=1500B.300(1+2x)=1500
C.300(1+x2)=1500D.300+2x=1500
4.如图,在⊙中,半径垂直弦于,点在⊙上,,则半径等于( )
A.B.C.D.
5.矩形的周长为12cm,设其一边长为xcm,面积为ycm2,则y与x的函数关系式及其自变量x的取值范围均正确的是( )
A.y=﹣x2+6x(3<x<6)B.y=﹣x2+12x(0<x<12)
C.y=﹣x2+12x(6<x<12)D.y=﹣x2+6x(0<x<6)
6.已知(﹣1,y1),(2,y2),(3,y3)在二次函数y=﹣x2+4x+c的图象上,则y1,y2,y3的大小关系正确的是( )
A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y1<y3<y2
7.如图,四边形ABCD为⊙O的内接四边形,已知∠BCD=130°,则∠BOD=( )
A.
B.
C.
D.
8.如图,P是等腰直角△ABC外一点,把BP绕点B顺时针旋转90°到BP′,使点P′在△ABC内,已知∠AP′B=135°,若连接P′C,P′A:P′C=1:4,则P′A:P′B=( )
A.1:4B.1:5C.2:D.1:
9.如图,将矩形沿对角线折叠,使落在处,交于,则下列结论不一定成立的是( )
A.B.
C.D.
10.如图1,在△ABC中,AB=BC,AC=m,D,E分别是AB,BC边的中点,点P为AC边上的一个动点,连接PD,PB,PE.设AP=x,图1中某条线段长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是( )
A.PDB.PBC.PED.PC
二、填空题(每小题3分,共24分)
11.如图,在平面直角坐标系中,直线l的函数表达式为,点的坐标为(1,0),以为圆心,为半径画圆,交直线于点,交轴正半轴于点,以为圆心,为半径的画圆,交直线于点,交轴的正半轴于点,以为圆心,为半径画圆,交直线与点,交轴的正半轴于点,… 按此做法进行下去,其中弧的长为_______.
12.如图,正比例函数y1=k1x和反比例函数y2=的图象交于A(﹣1,2),B(1,﹣2)两点,若y1>y2,则x的取值范围是_____.
13.如图,某园林公司承担了绿化某社区块空地的绿化任务,工人工作一段时间后,提高了工作效率.该公司完成的绿化面积(单位:与工作时间(单位:)之间的函数关系如图所示,则该公司提高工作效率前每小时完成的绿化面积是____________.
14.一元二次方程的两根之积是_________.
15.如图,四边形ABCD内接于⊙O,F是上一点,且,连接CF并延长交AD的延长线于点E,连接AC.若∠ABC=105°,∠BAC=25°,则∠E的度数为______度.
16.如图,AB为⊙O的直径,点D是弧AC的中点,弦BD,AC交于点E,若DE=2,BE=4,则tan∠ABD=_____.
17.在中,,,则______.
18.如图,已知AB是半圆O的直径,∠BAC=20°,D是弧AC上任意一点,则∠D的度数是_________.
三、解答题(共66分)
19.(10分)我市某工艺厂为配合北京奥运,设计了一款成本为20元∕件的工艺品投放市场进行试销.经过调查,得到如下数据:
(1)把上表中x、y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y与x的函数关系,并求出函数关系式;
(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价﹣成本总价)
(3)当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?
20.(6分)如图,在直角坐标系中,抛物线y=ax2+bx-2与x轴交于点A(-3,0)、B(1,0),与y轴交于点C.
(1)求抛物线的函数表达式.
(2)在抛物线上是否存在点D,使得△ABD的面积等于△ABC的面积的倍?若存在,求出点D的坐标;若不存在,请说明理由.
(3)若点E是以点C为圆心且1为半径的圆上的动点,点F是AE的中点,请直接写出线段OF的最大值和最小值.
21.(6分)如图①,四边形是边长为2的正方形,,四边形是边长为的正方形,点分别在边上,此时,成立.
(1)当正方形绕点逆时针旋转,如图②,成立吗?若成立,请证明;若不成立,请说明理由;
(2)当正方形绕点逆时针旋转(任意角)时,仍成立吗?直接回答;
(3)连接,当正方形绕点逆时针旋转时,是否存在∥,若存在,请求出的值;若不存在,请说明理由.
22.(8分)如图,是的直径,点在的延长线上,平分交于点,且的延长线,垂足为点.
(1)求证:直线是的切线;
(2)若,,求的长.
23.(8分)已知:△ABC是等腰直角三角形,∠BAC=90°,将△ABC绕点C顺时针方向旋转得到△A′B′C,记旋转角为α,当90°<α<180°时,作A′D⊥AC,垂足为D,A′D与B′C交于点E.
(1)如图1,当∠CA′D=15°时,作∠A′EC的平分线EF交BC于点F.
①写出旋转角α的度数;
②求证:EA′+EC=EF;
(2)如图2,在(1)的条件下,设P是直线A′D上的一个动点,连接PA,PF,若AB=,求线段PA+PF的最小值.(结果保留根号)
24.(8分)在如图所示的网格图中,已知和点
(1)在网格图中点M为位似中心,画出,使其与的位似比为1:1.
(1)写出的各顶点的坐标.
25.(10分)如图,在△ABC 中,AB=AC,M 为BC的中点,MH⊥AC,垂足为 H.
(1)求证:;
(2)若 AB=AC=10,BC=1.求CH的长.
26.(10分)某商场经销种高档水果 ,原价每千克元,连续两次降价后每千克元,若每次下降的百分率相同求每次下降的百分率
参考答案
一、选择题(每小题3分,共30分)
1、B
2、D
3、A
4、B
5、D
6、D
7、C
8、C
9、C
10、C
二、填空题(每小题3分,共24分)
11、.
12、x<﹣2或0<x<2
13、
14、
15、1
16、
17、
18、110°
三、解答题(共66分)
19、(1)图见解析,y=-10x+1;(2)单价定为50元∕件时,工艺厂试销该工艺品每天获得的利润最大,最大利润是9000元;(3)单价定为45元∕件时,工艺厂试销该工艺品每天获得的利润最大.
20、(1);(2)存在,理由见解析;D(-4, )或(2,);(3)最大值; 最小值
21、(1)成立,证明见解析;(2)结论仍成立;(3)存在,
22、(1)见解析;(2)
23、(1)①105°,②见解析;(2)
24、(1)图见解析;(1).
25、(1)详见解析;(2)3.2
26、每次下降的百分率为20%
销售单价x(元/件)
…
30
40
50
60
…
每天销售量y(件)
…
500
400
300
200
…
山西省太原市名校2023-2024学年九年级数学第一学期期末经典模拟试题含答案: 这是一份山西省太原市名校2023-2024学年九年级数学第一学期期末经典模拟试题含答案,共8页。试卷主要包含了下列事件中,是随机事件的是,已知抛物线y=ax2+bx+c等内容,欢迎下载使用。
2023-2024学年山西省晋城市名校数学九年级第一学期期末经典模拟试题含答案: 这是一份2023-2024学年山西省晋城市名校数学九年级第一学期期末经典模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,如图,点P,抛物线y=﹣等内容,欢迎下载使用。
山西省太原市2023-2024学年度第一学期九年级数学期末试题(含答案): 这是一份山西省太原市2023-2024学年度第一学期九年级数学期末试题(含答案),共7页。