株洲市重点中学2023-2024学年数学九年级第一学期期末质量检测模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题3分,共30分)
1.如图,△ABC的边AC与⊙O相交于C、D两点,且经过圆心O,边AB与⊙O相切,切点为B.已知∠A=30°,则∠C的大小是( )
A.30°B.45°C.60°D.40°
2.如图,是等腰直角三角形,且,轴,点在函数的图象上,若,则的值为( )
A.B.C.D.
3.一个不透明的袋子中装有2个红球、3个白球,每个球除颜色外都相同.从中任意摸出3个球,下列事件为必然事件的是( )
A.至少有1个球是红球B.至少有1个球是白球
C.至少有2个球是红球D.至少有2个球是白球
4.如图,在ABCD中,E为CD上一点,已知S△DEF: S△ABF=4: 25,则DE:EC为( )
A.4:5B.4:25C.2:3D.3:2
5.如图,,,是⊙上的三个点,如果∠°,那么∠的度数为( )
A.B.C.D.
6.已知△ABC∽△A'B'C,AB=8,A'B'=6,则△ABC与△A'B'C的周长之比为( )
A.B.C.D.
7.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知,则球的半径长是( )
A.2B.2.5C.3D.4
8.如图,在扇形纸片AOB中,OA =10,ÐAOB=36°,OB在直线l上.将此扇形沿l按顺时针方向旋转(旋转过程中无滑动),当OA落在l上时,停止旋转.则点O所经过的路线长为( )
A.B.C.D.
9.一元二次方程x(3x+2)=6(3x+2)的解是( )
A.x=6B.x=﹣C.x1=6,x2=﹣D.x1=﹣6,x2=
10.下列事件中是必然发生的事件是( )
A.抛两枚均匀的硬币,硬币落地后,都是正面朝上
B.射击运动员射击一次,命中十环
C.在地球上,抛出的篮球会下落
D.明天会下雨
二、填空题(每小题3分,共24分)
11.当a=____时,关于x的方程式为一元二次方程
12.从五个数1,2,3,4,5中随机抽出1个数 ,则数3被抽中的概率为_________.
13.关于x的一元二次方程x2+4x﹣2k=0有实数根,则k的取值范围是_____.
14.某校欲从初三级部3名女生,2名男生中任选两名学生代表学校参加全市举办的“中国梦•青春梦”演讲比赛,则恰好选中一男一女的概率是_____.
15.已知二次函数y=ax2+bx+c的图象如图所示,则a_____1,b_____1,c_____1.
16.如图,的半径弦于点,连结并延长交于点,连结.若,,则的长为_______.
17.若,则_______.
18.一组数据,,,,的众数是,则=_________.
三、解答题(共66分)
19.(10分)某商业集团新建一小车停车场,经测算,此停车场每天需固定支出的费用(设施维修费、车辆管理人员工资等)为800元.为制定合理的收费标准,该集团对一段时间每天小车停放辆次与每辆次小车的收费情况进行了调查,发现每辆次小车的停车费不超过5元时,每天来此处停放的小车可达1440辆次;若停车费超过5元,则每超过1元,每天来此处停放的小车就减少120辆次.为便于结算,规定每辆次小车的停车费x(元)只取整数,用y(元)表示此停车场的日净收入,且要求日净收入不低于2512元.(日净收入=每天共收取的停车费﹣每天的固定支出)
(1)当x≤5时,写出y与x之间的关系式,并说明每辆小车的停车费最少不低于多少元;
(2)当x>5时,写出y与x之间的函数关系式(不必写出x的取值范围);
(3)该集团要求此停车场既要吸引客户,使每天小车停放的辆次较多,又要有较大的日净收入.按此要求,每辆次小车的停车费应定为多少元?此时日净收入是多少?
20.(6分)为了配合全市“创建全国文明城市”活动,某校共1200名学生参加了学校组织的创建全国文明城市知识竞赛,拟评出四名一等奖.
(1)求每一位同学获得一等奖的概率;
(2)学校对本次竞赛获奖情况进行了统计,其中七、八年级分别有一名同学获得一等奖,九年级有2名同学获得一等奖,现从获得一等奖的同学中任选两人参加全市决赛,请通过列表或画树状图的方法,求所选出的两人中既有七年级又有九年级同学的概率.
21.(6分)(1)计算:;
(2)解方程:.
22.(8分)如图,在正方形中,点在边上,过点作于,且.
(1)若,求正方形的周长;
(2)若,求正方形的面积.
23.(8分)如图,是直径AB所对的半圆弧,点P是与直径AB所围成图形的外部的一个定点,AB=8cm,点C是上一动点,连接PC交AB于点D.
小明根据学习函数的经验,对线段AD,CD,PD,进行了研究,设A,D两点间的距离为x cm,C,D两点间的距离为cm,P,D两点之间的距离为cm.
小明根据学习函数的经验,分别对函数,随自变量x的变化而变化的规律进行了探究.
下面是小明的探究过程,请补充完整:
(2)按照下表中自变量x的值进行取点、画图、测量,分别得到了,与x的几组对应值:
补充表格;(说明:补全表格时,相关数值保留两位小数)
(2)在同一平面直角坐标系中,描出补全后的表中各组数值所对应的点,并画出函数的图象:
(3)结合函数图象解决问题:当AD=2PD 时,AD的长度约为___________.
24.(8分)如图,把点以原点为中心,分别逆时针旋转,,,得到点,,.
(1)画出旋转后的图形,写出点,,的坐标,并顺次连接、,,各点;
(2)求出四边形的面积;
(3)结合(1),若把点绕原点逆时针旋转到点,则点的坐标是什么?
25.(10分)一家公司招考员工,每位考生要在A、B、C、D、E这5道试题中随机抽出2道题回答,规定答对其中1题即为合格.已知某位考生会答A、B两题,试求这位考生合格的概率.
26.(10分)解方程
(1)(用配方法)
(2)
(3)计算:
参考答案
一、选择题(每小题3分,共30分)
1、A
2、B
3、B
4、C
5、C
6、C
7、B
8、A
9、C
10、C
二、填空题(每小题3分,共24分)
11、≠±1
12、
13、k≥﹣1
14、
15、< < >
16、
17、
18、
三、解答题(共66分)
19、(1)y=1440x﹣800;每辆次小车的停车费最少不低于3元;(2)y=﹣120x2+2040x﹣800;(3)每辆次小车的停车费应定为8元,此时的日净收入为7840元.
20、(1);(2).
21、(1);(2),
22、(1);(2).
23、(2)m=2.23;(2)见解析;(3)4.3
24、 (1)详见解析, ,,;(2)50;(3)
25、
26、(1),;(2),;(3)
x/cm
0.00
2.00
2.00
3.00
3.20
4.00
5.00
6.00
6.50
2.00
8.00
/cm
0.00
2.04
2.09
3.22
3.30
4.00
4.42
3.46
2.50
2.53
0.00
/cm
6.24
5.29
4.35
3.46
3.30
2.64
2.00
m
2.80
2.00
2.65
福州市重点中学2023-2024学年数学九年级第一学期期末质量检测模拟试题含答案: 这是一份福州市重点中学2023-2024学年数学九年级第一学期期末质量检测模拟试题含答案,共8页。试卷主要包含了已知两个相似三角形的相似比为4等内容,欢迎下载使用。
信阳市重点中学2023-2024学年数学九年级第一学期期末质量检测模拟试题含答案: 这是一份信阳市重点中学2023-2024学年数学九年级第一学期期末质量检测模拟试题含答案,共7页。试卷主要包含了若两个相似三角形的周长之比是1等内容,欢迎下载使用。
西安市重点中学2023-2024学年九年级数学第一学期期末质量检测模拟试题含答案: 这是一份西安市重点中学2023-2024学年九年级数学第一学期期末质量检测模拟试题含答案,共7页。