江苏省东台市实验中学2023-2024学年九年级数学第一学期期末达标测试试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题3分,共30分)
1.已知二次函数y=x2+2x-m与x轴没有交点,则m的取值范围是( )
A.m<-1B.m>-1C.m<-1且m≠0D.m>-1且m≠0
2.如图,把长40,宽30的矩形纸板剪掉2个小正方形和2个小矩形(阴影部分即剪掉部分),将剩余的部分折成一个有盖的长方体盒子,设剪掉的小正方形边长为(纸板的厚度忽略不计),若折成长方体盒子的表面积是950,则的值是( )
A.3B.4C.4.8D.5
3.下列调查中,适合采用全面调查(普查)方式的是( )
A.了解重庆市中小学学生课外阅读情况
B.了解重庆市空气质量情况
C.了解重庆市市民收看重庆新闻的情况
D.了解某班全体同学九年级上期第一次月考数学成绩得分的情况
4.如图,点P在△ABC的边AC上,下列条件中不能判断△ABP∽△ACB的是( )
A.∠ABP=∠CB.∠APB=∠ABCC.AB2=AP•ACD.CB2=CP•CA
5.下列说法正确的是( )
A.一颗质地硬币已连续抛掷了5次,其中抛掷出正面的次数为1次,则第6次一定抛掷出为正面
B.某种彩票中奖的概率是2%,因此买100张该种彩票一定会中奖
C.天气预报说2020年元旦节紫云下雨的概率是50%,所以紫云2020年元旦节这天将有一半时间在下雨
D.某口袋中有红球3个,每次摸出一个球是红球的概率为100%
6.下列事件是必然事件的是( )
A.某人体温是100℃B.太阳从西边下山
C.a2+b2=﹣1D.购买一张彩票,中奖
7.某市计划争取“全面改薄”专项资金120 000 000元,用于改造农村义务教育薄弱学校100所数据120 000 000用科学记数法表示为( )
A.12×108B.1.2×108C.1.2×109D.0.12×109
8.如图,在平面直角坐标系中,菱形的顶点与原点重合,顶点落在轴的正半轴上,对角线、交于点,点、恰好都在反比例函数的图象上,则的值为( )
A.B.C.2D.
9.国家实施“精准扶贫”政策以来,很多贫困人口走向了致富的道路.永州市2016年底大约有贫困人口13万人,通过社会各界的努力,2018年底贫困人口减少至1万人.设2016年底至2018年底该地区贫困人口的年平均下降率为,根据题意列方程得( )
A.B.C.D.
10.如图,已知:在⊙O中,OA⊥BC,∠AOB=70°,则∠ADC的度数为( )
A.70°B.45°C.35°D.30°
二、填空题(每小题3分,共24分)
11.已知实数在数轴上的位置如图所示,则化简__________.
12.数学学习应经历“观察、实验、猜想、证明”等过程.下表是几位数学家“抛掷硬币”的实验数据:
请根据以上实验数据,估计硬币出现“正面朝上”的概率为__________.(精确到0.1)
13.如图,在四边形ABCD中,AD∥BC∥EF,EF分别与AB,AC,CD相交于点E,M,F,若EM:BC=2:5,则FC:CD的值是_____.
14.如图,在平行四边形中,是线段上的点,如果,,连接与对角线交于点,则_______.
15.如图,四边形ABCD与四边形EFGH位似,其位似中心为点O,且,则______.
16.抛物线y=﹣x2+bx+c的部分图象如图所示,已知关于x的一元二次方程﹣x2+bx+c=0的一个解为x1=1,则该方程的另一个解为x2=_____.
17.如图,已知中,点、、分别是边、、上的点,且,,且,若,那么__________
18.随即掷一枚均匀的硬币三次次,三次正面朝上的概率是______________.
三、解答题(共66分)
19.(10分)如图,AB为半圆O的直径,点C在半圆上,过点O作BC的平行线交AC于点E,交过点A的直线于点D,且∠D=∠BAC
(1)求证:AD是半圆O的切线;
(2)求证:△ABC∽△DOA;
(3)若BC=2,CE=,求AD的长.
20.(6分)在面积都相等的一组三角形中,当其中一个三角形的一边长为1时,这条边上的高为1.
(1)①求关于的函数解析式;
②当时,求的取值范围;
(2)小明说其中有一个三角形的一边与这边上的高之和为4,你认为小明的说法正确吗?为什么?
21.(6分)有六张完全相同的卡片,分两组,每组三张,在组的卡片上分别画上“√,×,√”,组的卡片上分别画上“√,×,×”,如图①所示.
(1)若将卡片无标记的一面朝上摆在桌上,再分别从两组卡片中随机各抽取一张,求两张卡片上标记都是“√”的概率(请用“树形图法”或“列表法”求解).
(2)若把两组卡片无标记的一面对应粘贴在一起得到三张卡片,其正、反面标记如图②所示,将卡片正面朝上摆在桌上,并用瓶盖盖住标记.
①若随机揭开其中一个盖子,看到的标记是“√”的概率是多少?
②若揭开盖子,看到的卡片正面标记是“√”后,猜想它的反面也是“√”,求猜对的概率.
22.(8分)阅读材料:
材料2 若一元二次方程ax2+bx+c=0(a≠0)的两个根为x2,x2则x2+x2=﹣,x2x2=.
材料2 已知实数m,n满足m2﹣m﹣2=0,n2﹣n﹣2=0,且m≠n,求的值.
解:由题知m,n是方程x2﹣x﹣2=0的两个不相等的实数根,根据材料2得m+n=2,mn=﹣2,所以=﹣2.
根据上述材料解决以下问题:
(2)材料理解:一元二次方程5x2+20x﹣2=0的两个根为x2,x2,则x2+x2= ,x2x2= .
(2)类比探究:已知实数m,n满足7m2﹣7m﹣2=0,7n2﹣7n﹣2=0,且m≠n,求m2n+mn2的值:
(2)思维拓展:已知实数s、t分别满足29s2+99s+2=0,t2+99t+29=0,且st≠2.求的值.
23.(8分)如图,二次函数 (a 0) 与 x 轴交于 A、C 两点,与 y 轴交于点 B,P 为 抛物线的顶点,连接 AB,已知 OA:OC=1:3.
(1)求 A、C 两点坐标;
(2)过点 B 作 BD∥x 轴交抛物线于 D,过点 P 作 PE∥AB 交 x 轴于 E,连接 DE,
①求 E 坐标;
②若 tan∠BPM=,求抛物线的解析式.
24.(8分)垃圾分类是必须要落实的国家政策,环卫部门要求垃圾要按可回收物,有害垃圾,餐厨垃圾,其它垃圾四类分别装袋,投放.甲投放了一袋垃圾,乙投放了两袋垃圾(两袋垃圾不同类).
(1)直接写出甲投放的垃圾恰好是类垃圾的概率;
(2)用树状图求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.
25.(10分)如图,一次函数y=﹣x+4的图象与反比例函数y=(k为常数,且k≠0)的图象交于A(1,a),B(3,b)两点.
(1)求反比例函数的表达式
(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标
(3)求△PAB的面积.
26.(10分)甲、乙两台机器共同加工一批零件,一共用了小时.在加工过程中乙机器因故障停止工作,排除故障后,乙机器提高了工作效率且保持不变,继续加工.甲机器在加工过程中工作效率保持不变.甲、乙两台机器加工零件的总数(个)与甲加工时间之间的函数图象为折线,如图所示.
(1)这批零件一共有 个,甲机器每小时加工 个零件,乙机器排除故障后每小时加工 个零件;
(2)当时,求与之间的函数解析式;
(3)在整个加工过程中,甲加工多长时间时,甲与乙加工的零件个数相等?
参考答案
一、选择题(每小题3分,共30分)
1、A
2、D
3、D
4、D
5、D
6、B
7、B
8、A
9、B
10、C
二、填空题(每小题3分,共24分)
11、
12、0.1
13、
14、
15、
16、﹣1
17、
18、
三、解答题(共66分)
19、(1)见解析;(2)见解析;(3)
20、(1)①;②;(2)小明的说法不正确.
21、(1);(2)①;②
22、(2)-2,-;(2)﹣;(2)﹣.
23、(1)A(-1,0),C(3,0);(2)① E(-,0);②原函数解析式为:.
24、 (1) ; (2)乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率是.
25、(1)反比例函数的表达式y=,(2)点P坐标(,0), (3)S△PAB= 1.1.
26、(1);(2);(3)甲加工或时,甲与乙加工的零件个数相等.
实验者
棣莫弗
蒲丰
德·摩根
费勒
皮尔逊
罗曼诺夫斯基
掷币次数
2048
4040
6140
10000
36000
80640
出现“正面朝上”的次数
1061
2048
3109
4979
18031
39699
频率
0.518
0.507
0.506
0.498
0.501
0.492
江苏省盐城东台市实验中学2023-2024学年数学九年级第一学期期末联考模拟试题含答案: 这是一份江苏省盐城东台市实验中学2023-2024学年数学九年级第一学期期末联考模拟试题含答案,共9页。试卷主要包含了将抛物线如何平移得到抛物线等内容,欢迎下载使用。
2023-2024学年江苏省盐城市东台市三仓镇区中学九年级数学第一学期期末达标检测试题含答案: 这是一份2023-2024学年江苏省盐城市东台市三仓镇区中学九年级数学第一学期期末达标检测试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,下列叙述,错误的是,若反比例函数的图象过点A等内容,欢迎下载使用。
2023-2024学年江苏省盐城市东台市七校九年级数学第一学期期末达标检测试题含答案: 这是一份2023-2024学年江苏省盐城市东台市七校九年级数学第一学期期末达标检测试题含答案,共8页。试卷主要包含了下列命题是真命题的是,下列说法正确的是,一元二次方程的根的情况是等内容,欢迎下载使用。