江苏省扬州市江都区十校联考2023-2024学年数学九上期末检测试题含答案
展开学校_______ 年级_______ 姓名_______
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题3分,共30分)
1.如图,AB是一垂直于水平面的建筑物,某同学从建筑物底端B出发,先沿水平方向向右行走20米到达点C,再经过一段坡度(或坡比)为i=1:0.75、坡长为10米的斜坡CD到达点D,然后再沿水平方向向右行走40米到达点E(A,B,C,D,E均在同一平面内).在E处测得建筑物顶端A的仰角为24°,则建筑物AB的高度约为(参考数据:sin24°≈0.41,cs24°≈0.91,tan24°=0.45)( )
A.21.7米B.22.4米C.27.4米D.28.8米
2.为了解我市居民用水情况,在某小区随机抽查了20户家庭,并将这些家庭的月用水量进行统计,结果如下表:
则关于这20户家庭的月用水量,下列说法正确的是( )
A.中位数是5B.平均数是5C.众数是6D.方差是6
3.将二次函数y=x2的图象沿y轴向上平移2个单位长度,再沿x轴向左平移3个单位长度,所得图象对应的函数表达式为( )
A.y=(x+3)2+2B.y=(x﹣3)2+2C.y=(x+2)2+3D.y=(x﹣2)2+3
4.如图,在平面直角坐标系中,点、、为反比例函数()上不同的三点,连接、、,过点作轴于点,过点、分别作,垂直轴于点、,与相交于点,记四边形、、的面积分别为,、、,则( )
A.B.C.D.
5.据路透社报道,中国华为技术有限公司推出新的服务器芯片组,此举正值中国努力提高芯片制造能力,并减少对进口芯片的严重依赖.华为技术部门还表示,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占有面积.其中0.00000065用科学记数法表示为( )
A.B.C.D.
6.赵州桥的桥拱可以用抛物线的一部分表示,函数关系为,当水面宽度AB为20m时,水面与桥拱顶的高度DO等于( )
A.2mB.4mC.10mD.16m
7.下列函数中属于二次函数的是( )
A.y=xB.y=2x2-1C.y=D.y=x2++1
8.如果函数的图象与双曲线相交,则当 时,该交点位于( )
A.第一象限B.第二象限C.第三象限D.第四象限
9.下列方程是一元二次方程的是( )
A.B.C.D.
10.如图⊙O的半径为5,弦心距,则弦的长是( )
A.4B.6C.8D.5
二、填空题(每小题3分,共24分)
11.若圆锥的母线长为4cm,其侧面积,则圆锥底面半径为 cm.
12.如图,已知正方形ABCD的边长为1,点M是BC边上的动点(不与B,C重合),点N是AM的中点,过点N作EF⊥AM,分别交AB,BD,CD于点E,K,F,设BM=x.
(1)AE的长为______(用含x的代数式表示);
(2)设EK=2KF,则的值为______.
13.如图,平行四边形中,,.以为圆心,为半径画弧,交于点,以为圆心,为半径画弧,交于点.若用扇形围成一个圆维的侧面,记这个圆锥的底面半径为;若用扇形围成另一个圆锥的侧面,记这个圆锥的底面半径为,则的值为______.
14.已知线段c是线段、的比例中项,且,,则线段c的长度为______.
15.如图,,与交于点,已知,,,那么线段的长为__________.
16.计算:= .
17.某种商品每件进价为10元,调查表明:在某段时间内若以每件x元(10≤x≤20且x为整数)出售,可卖出(20﹣x)件,若使利润最大,则每件商品的售价应为_____元.
18.如上图,四边形中,,点在轴上,双曲线过点,交于点,连接.若,,则的值为 ______.
三、解答题(共66分)
19.(10分)如图,AB=3AC,BD=3AE,又BD∥AC,点B,A,E在同一条直线上.求证:△ABD∽△CAE
20.(6分)为了“创建文明城市,建设美丽台州”,我市某社区将辖区内一块不超过1000平方米的区域进行美化.经调查,美化面积为100平方米时,每平方米的费用为300元.每增加1平方米,每平方米的费用下降0.2元。设美化面积增加x平方米,美化所需总费用为y元.
(1)求y与x的函数关系式;
(2)当美化面积增加100平方米时,美化的总费用为多少元;
(3)当美化面积增加多少平方米时,美化所需费用最高?最高费用是多少元?
21.(6分)如图,已知中,,是的中点,.
求证:四边形是菱形.
22.(8分)在正方形和等腰直角中,,是的中点,连接、.
(1)如图1,当点在边上时,延长交于点.求证:;
(2)如图2,当点在的延长线上时,(1)中的结论是否成立?请证明你的结论;
(3)如图3,若四边形为菱形,且,为等边三角形,点在的延长线上时,线段、又有怎样的数量关系,请直接写出你的结论,并画出论证过程中需要添加的辅助线.
23.(8分)如图①,在矩形ABCD中,BC=60cm.动点P以6cm/s的速度在矩形ABCD的边上沿A→D的方向匀速运动,动点Q在矩形ABCD的边上沿A→B→C的方向匀速运动.P、Q两点同时出发,当点P到达终点D时,点Q立即停止运动.设运动的时间为t(s),△PDQ的面积为S(cm2),S与t的函数图象如图②所示.
(1)AB= cm,点Q的运动速度为 cm/s;
(2)在点P、Q出发的同时,点O也从CD的中点出发,以4cm/s的速度沿CD的垂直平分线向左匀速运动,以点O为圆心的⊙O始终与边AD、BC相切,当点P到达终点D时,运动同时停止.
①当点O在QD上时,求t的值;
②当PQ与⊙O有公共点时,求t的取值范围.
24.(8分)如图,在矩形中,点为原点,点的坐标为,点的坐标为,抛物线经过点、,与交于点.
备用图
⑴求抛物线的函数解析式;
⑵点为线段上一个动点(不与点重合),点为线段上一个动点,,连接,设,的面积为.求关于的函数表达式;
⑶抛物线的顶点为,对称轴为直线,当最大时,在直线上,是否存在点,使以、、、为顶点的四边形是平行四边形,若存在,请写出符合条件的点的坐标;若不存在,请说明理由.
25.(10分)在平面直角坐标系中,函数图象上点的横坐标与其纵坐标的和称为点的“坐标和”,而图象上所有点的“坐标和”中的最小值称为图象的“智慧数”.如图:抛物线上有一点,则点的“坐标和”为6,当时,该抛物线的“智慧数”为1.
(1)点在函数的图象上,点的“坐标和”是 ;
(2)求直线的“智慧数”;
(3)若抛物线的顶点横、纵坐标的和是2,求该抛物线的“智慧数”;
(4)设抛物线顶点的横坐标为,且该抛物线的顶点在一次函数的图象上;当时,抛物线的“智慧数”是2,求该抛物线的解析式.
26.(10分)某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.
(1)求每个月生产成本的下降率;
(2)请你预测4月份该公司的生产成本.
参考答案
一、选择题(每小题3分,共30分)
1、A
2、C
3、A
4、C
5、B
6、B
7、B
8、C
9、B
10、C
二、填空题(每小题3分,共24分)
11、3
12、 x
13、1
14、6
15、
16、1.
17、1
18、6
三、解答题(共66分)
19、见解析
20、(1);(2)当美化面积增加100平方米时,美化的总费用为56000元;(3)当美化面积增加700平方米时,费用最高,最高为128000元
21、详见解析.
22、(1)证明见解析;(2)成立,证明见解析;(3),图详见解析.
23、(1)30,6;(2)①;②≤t≤.
24、(1);(2);(3)点的坐标为,
25、(1)4;(2)直线“智慧数”等于;(3)抛物线的“智慧数”是;(4)抛物线的解析式为或
26、(1)每个月生产成本的下降率为5%;(2)预测4月份该公司的生产成本为342.95万元.
月用水量(吨)
4
5
6
8
13
户数
4
5
7
3
1
江苏省扬州江都区六校联考2023-2024学年九上数学期末调研试题含答案: 这是一份江苏省扬州江都区六校联考2023-2024学年九上数学期末调研试题含答案,共7页。
2023-2024学年江苏省扬州市江都区五校联谊九上数学期末综合测试模拟试题含答案: 这是一份2023-2024学年江苏省扬州市江都区五校联谊九上数学期末综合测试模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,已知与各边相切于点,,则的半径,抛物线y=2,在下列命题中,正确的是等内容,欢迎下载使用。
2023-2024学年江苏省扬州市江都区江都区实验初级中学九上数学期末统考试题含答案: 这是一份2023-2024学年江苏省扬州市江都区江都区实验初级中学九上数学期末统考试题含答案,共7页。试卷主要包含了点P,3的倒数是等内容,欢迎下载使用。