江苏省扬州市广陵区2023-2024学年数学九上期末联考模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.如图是由四个相同的小正方体组成的立体图形,它的主视图为( ).
A.B.C.D.
2.如图1,E为矩形ABCD边AD上一点,点P从点C沿折线CD﹣DE﹣EB运动到点B时停止,点Q从点B沿BC运动到点C时停止,它们运动的速度都是1cm/s.若P,Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2).已知y与t的函数图象如图2,则下列结论错误的是( )
A.AE=8cm
B.sin∠EBC=
C.当10≤t≤12时,
D.当t=12s时,△PBQ是等腰三角形
3.如图,是二次函数y=ax2+bx+c图象的一部分,其对称轴是x=﹣1,且过点(﹣3,0),下列说法:①abc<0;②2a﹣b=0;③若(﹣5,y1),(3,y2)是抛物线上两点,则y1=y2;④4a+2b+c<0,其中说法正确的( )
A.①②B.①②③C.①②④D.②③④
4.如图,AB是一垂直于水平面的建筑物,某同学从建筑物底端B出发,先沿水平方向向右行走20米到达点C,再经过一段坡度(或坡比)为i=1:0.75、坡长为10米的斜坡CD到达点D,然后再沿水平方向向右行走40米到达点E(A,B,C,D,E均在同一平面内).在E处测得建筑物顶端A的仰角为24°,则建筑物AB的高度约为(参考数据:sin24°≈0.41,cs24°≈0.91,tan24°=0.45)( )
A.21.7米B.22.4米C.27.4米D.28.8米
5.如果关于x的一元二次方程k2x2-(2k+1)x+1=0有两个不相等的实数根,那么k的取值范围是( )
A.k>-B.k>-且C.k<-D.k-且
6.如图,已知AE与BD相交于点C,连接AB、DE,下列所给的条件不能证明△ABC~△EDC的是( )
A.∠A=∠EB.C.AB∥DED.
7.关于反比例函数,下列说法错误的是( )
A.随的增大而减小B.图象位于一、三象限
C.图象过点D.图象关于原点成中心对称
8.抛物线y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是( )
A.ab<0B.a+b+2c﹣2>0C.b2﹣4ac<0D.2a﹣b>0
9.如图,是正方形与正六边形的外接圆.则正方形与正六边形的周长之比为( )
A.B.C.D.
10.用公式法解一元二次方程时,化方程为一般式当中的依次为( )
A.B.C.D.
二、填空题(每小题3分,共24分)
11.两个相似多边形的一组对应边分别为2cm和3cm,那么对应的这两个多边形的面积比是__________
12.若实数、满足,则以、的值为边长的等腰三角形的周长为
.
13.已知圆锥的底面圆半径是1,母线是3,则圆锥的侧面积是______.
14.二次函数的部分图象如图所示,图象过点,对称轴为直线,下列结论:①;②;③一元二次方程的解是,;④当时,,其中正确的结论有__________.
15.点A(1,-2)关于原点对称的点A1的坐标为________.
16.有两辆车按1,2编号,舟舟和嘉嘉两人可任意选坐一辆车.则两人同坐2号车的概率为_______.
17.如果函数 是二次函数,那么k的值一定是________.
18.已知是一元二次方程的一个根,则的值是______.
三、解答题(共66分)
19.(10分)如图,一次函数y=kx+b的图象与反比例函数y=的图象交于点A(-3,m+8),B(n,-6)两点.
(1)求一次函数与反比例函数的解析式;
(2)求△AOB的面积.
20.(6分)已知木棒垂直投射于投影面上的投影为,且木棒的长为.
(1)如图(1),若平行于投影面,求长;
(2)如图(2),若木棒与投影面的倾斜角为,求这时长.
21.(6分)如图,在的正方形网格中,每个小正方形的边长为1,建立如图所示的坐标系.
(1)若将沿轴对折得到,则的坐标为 .
(2)以点为位似中心,将各边放大为原来的2倍,得到,请在这个网格中画出.
(3)若小明蒙上眼睛在一定距离外,向的正方形网格内掷小石子,则刚好掷入的概率是多少? (未掷入图形内则不计次数,重掷一次)
22.(8分)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣3,2),B(0,4),C(0,2).
(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C1,平移△ABC,若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2;
(2)若将△A1B1C1绕某一点旋转可以得到△A2B2C2,请直接写出旋转中心的坐标.
23.(8分)如图,已知二次函数 的图像过点A(-4,3),B(4,4).
(1)求抛物线二次函数的解析式.
(2)求一次函数直线AB的解析式.
(3)看图直接写出一次函数直线AB的函数值大于二次函数的函数值的x的取值范围.
(4)求证:△ACB是直角三角形.
24.(8分)在四张背面完全相同的纸牌A、B、C、D,其中正面分别画有四个不同的几何图形(如图),小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸一张.
(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用A、B、C、D表示);
(2)求摸出两张纸牌牌面上所画几何图形,既是轴对称图形又是中心对称图形的概率.
25.(10分)如图,在中,,,为外一点,将绕点按顺时针方向旋转得到,且点、、三点在同一直线上.
(1)(观察猜想)
在图①中, ;在图②中, (用含的代数式表示)
(2)(类比探究)
如图③,若,请补全图形,再过点作于点,探究线段,,之间的数量关系,并证明你的结论;
(3)(问题解决)
若,,,求点到的距离.
26.(10分)某网店销售一种商品,其成本为每件30元.根据市场调查,当每件商品的售价为元()时,每周的销售量(件)满足关系式:.
(1)若每周的利润为2000元,且让消费者得到最大的实惠,则售价应定为每件多少元?
(2)当时,求每周获得利润的取值范围.
参考答案
一、选择题(每小题3分,共30分)
1、A
2、D
3、B
4、A
5、B
6、D
7、A
8、D
9、A
10、B
二、填空题(每小题3分,共24分)
11、4:9
12、1.
13、3π.
14、①②④
15、(-1,2)
16、.
17、-1
18、0
三、解答题(共66分)
19、(1)y=-,y=-2x-4(2)1
20、(1);(2).
21、(1)(4,-1);(2)见解析;(3).
22、(1)图形见解析;(2)P点坐标为(,﹣1).
23、(1);(2);(3)﹣4﹤x﹤4;(4)见解析
24、 (1)详见解析;(2).
25、(1);;(2),证明见解析;(3)点到的距离为或.
26、(1)售价应定为每件40元;(2)每周获得的利润的取值范围是1250元2250元.
2023-2024学年江苏省扬州市广陵区九年级(上)期末数学试卷(含解析): 这是一份2023-2024学年江苏省扬州市广陵区九年级(上)期末数学试卷(含解析),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023-2024学年江苏省扬州市广陵区数学九上期末统考模拟试题含答案: 这是一份2023-2024学年江苏省扬州市广陵区数学九上期末统考模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,在中,,,若,则的长为等内容,欢迎下载使用。
江苏省扬州市广陵区梅岭中学2023-2024学年数学九上期末教学质量检测模拟试题含答案: 这是一份江苏省扬州市广陵区梅岭中学2023-2024学年数学九上期末教学质量检测模拟试题含答案,共7页。试卷主要包含了若函数y=等内容,欢迎下载使用。